Quantcast
Channel: دانلود فایل رایگان
Viewing all articles
Browse latest Browse all 46175

مقاله A2.4.3 آناليز المان محدود تقريبي

$
0
0
 nx دارای 28 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است فایل ورد nx  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد. این پروژه توسط مرکز nx2 آماده و تنظیم شده است توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي nx،به هيچ وجه بهم ريختگي وجود ندارد بخشی از متن nx : محاسبات المان محدود در مدل برش صفحه ی برش نشان داده در شکل A2.4 به کار برده می شود . در این نوع تقریب ، هیچ گونه منبع گرمایی حجم درونی q* به چشم نمی خورد ؛ این در حالی است که منابع سطوح داخلی qs و qf در سطح اولیه ی برش و در عین حال در سطوح مشترک تراشه / ابزار وجود دارد . در خصوص انجام ارزیابی های آزمایشی بر سطوح برش ، زاویه ی سطح برش و هم چنین طول تماس تراشه / ابزار ، مولفه ی qs و میانگین ارزش مولفه ی qf در روابط ذیل مشخص می شوند : که مولفه های مذکور از روابط ذیل حاصل می شوند : به طور کل چنین فرض می شود که مولفه ی qs یک مقدار ثابت و یکنواخت در سطح اولیه ی برش به شمار می رود ؛ اما با این وجود ، به نظر می رسد مولفه ی qf در طیف وسیعی از توزیعات به کار گرفته شود ؛ در این راستا می توانید به مثلث نشان داده شده در شکل A2.4 رجوع نمایید . A2.4.4 توسعه ی شرایط ناپایدار و گذرامعادله ی ( A2.18 ) از لحاظ کاربردی پشتیبان محاسبات درجه حرارت ناپایدار می باشد ، البته درصورتی که مولفه ی q* توسط عبارت جایگزین گردد ؛ در نتیجه ، معادله ی المان محدود ( A2.20a ) منجر به شکل گیری رابطه ی ذیل خواهد گردید : شکل A2.4 شرایط کرانی گرمایی در نمونه ی سطح برشی براده برداری هم چنین رابطه ی ذیل را نیز شاهد خواهیم بود : ( در رابطه ی فوق مولفه ی [ C ] اشاره به 4 گره چهار وجهی دارد ) . با گذشت زمان ، فاصله ی t تفکیک کننده ی دو زمان با مولفه های متغیر tn و tn+1 محسوب می شود ؛ در حالی که مقادیر میانگین نسبت های گرهی تغییرات دما را می توان در دو رابطه ی ذیل بیان نمود : و یا رابطه ی ذیل : در رابطه ی فوق ، مولفه ی معادل کسر متفاوت بین ارقام 0 و 1 می باشد که در عین حال فشار وارد آمده بر مقادیر اولیه و نهایی نسبت های متفاوت تغییر درجه حرارت را تایید می نماید . هم چنین پس از معادلات چند منظوره ( A2.31 ) با توجه به مولفه ی [ C ] و جایگزین نمودن مولفه های [ C ] { T / t } در معادله ی ( A2.31a ) برای مقادیر ( { F } – [ H ] { T } ) از معادله ی ( A2.30 ) که معادل معادلات ( A2.31a ) و ( A2.31b ) می باشد و با مرتب نمودن مجدد این معادلات ، معادله ای در جهت درجه حرارت در زمان tn+1 بر حسب دما در مولفه ی tn شکل می گیرد : و در فرآیند مونتاژ جامع و یکپارچه رابطه ی ذیل را پیش رو خواهیم داشت : در واقع ، روابط فوق برآیند استاندارد در آزمایشات المان محدود ( به طور نمونه ، HUEBNER و THORNTON در سال 1982 ) به شمار می روند . در عین حال نیز محاسبات پله ای زمان در رابطه ی 05 یک مقدار ثابت می باشد . هم چنین فشار برابری در نقطه ی شروع و پایان تغییرات دمایی = 05 ) ( تحت عنوان شیوه ی CRANK – NICOLSON ( البته پس از بنیانگذاران این تکنیک ) شناخته می شوند که نتایج مطلوب آن را می توان به وضوح در محاسبات انتقال گرمایی برش فلزات مشاهده نمود . منابع پیوست 3 مکانیک کنتاکت و اصطکاکA3.1 مقدمهدر این پیوست به اختصار به بررسی و ارزیابی مفاهیم براده برداری فلز پرداخته می شود ؛ هم چنین با فشارهایی که در هنگام کنتاکت ( تماس ) میان بدنه های لغزشی صورت می گیرد ، نیز آشنا می شویم . این گونه فشارها با در نظر گرفتن عکس العملهای مواد به آنان برای اصطکاک و سایش مواد قابل تنظیم و کنترل می باشند . کلیه ی مولفه های مهندسی – از قبیل راه لغزنده ها ، چرخ دنده ها ، یاطاقانها و ابزارهای برش – دارای سطوح ناصاف می باشند و ویژگیهای چگونگی ساخت آنان به طور کامل مورد بررسی قرار می گیرد . هنگامی که چنین سطوحی با یکدیگر بارگذاری شوند ، در ابتدا نقاط بالای خود را لمس خواهند نمود . شکل A3.1 نشان دهنده ی تصویری از طرح کلی دو سطوح ناصاف می باشد که تحت بار W با یکدیگر تماس پیدا نموده اند که در سمت راست بالای یکی از سطوح لغزشی تحت شرایط فرآیند اصطکاک نیروی F به چشم می خورد . شکل A3.1 ( a ) نشان دهنده ی تماس ، ویژگیهای مواد و هم چنین زبری سطوحی می باشد که به منظور انتقال مسیر لغزشی به سطوح تماس حوزه های واقعی Ar تغییر شکل می یابند . آنگاه مقاومت سطوح لغزشی از فشارهای سطوح برش s حاصل می شوند . از سوی دیگر ، اصطکاک و سایش حاصل شده از فشارهای برشی ” اصطکاک چسبندگی ” نامیده می شوند . هم چنین در صورت وجود کنتاکت حوزه های واقعی در میانگین پایه ی فشار تماس طبیعی pr ، ضریب چسبندگی اصطکاک µa از طریق رابطه ی ذیل حاصل می شود : شکل A3.1 ( b ) بیان کننده ی سطوح حوزه های واقعی کنتاکت می باشد که متمایل به مسیر لغزشی می باشد ؛ در عین حال هر کنتاکت به دو بخش تقسیم می شود : قسمت پیشرو ( ابتدا ) و پسرو ( انتها ) میانگین طبیعی کنتاکت واقعی n . شکل A3.1 اصطکاک حاصل شده ( a ) توسط فشارهای برشی s و ( b ) توسط فشارهای مستقیم pحتی با فقدان فشارهای برش سطوح ، در صورت متفاوت بودن نیروهای طبیعی در بخشهای پیشرو و پسروی کنتاکتها از یکدیگر ، مقاومت در برابر سطوح لغزشی صورت می گیرد . در واقع ، بروز و شکل گیری اصطکاک و سایش از فشارهای طبیعی کنتاکت تحت عنوان ” اصطکاک تغییر شکل و دگر شکلی ” نامیده می شود . به طور میانگین ، در صورت متمایل بودن فشار طبیعی p1 در قسمت پیشروی کنتاکت زیر حوزه ی A1 به مولفه ی 1 در مسیر بار W و هم چنین قسمت پسروی کنتاکت معادل متغیرهایی همچون pt ، At و t ، با تفکیک نیرو در مسیرهای W و F می توانیم ضریب اصطکاک تغییر شکل µd را در فرمول ذیل نتیجه گیری نماییم : در اینجاست که شاهد بروز موارد خاصی می شویم ؛ البته در صورتی که کنتاکت حالت متقارن داشته باشد ) t = 1 ( p1 = pt ; A1 = At ; ؛ در عین حال معادله ی ( A3.2a ) در رابطه ی = 0 µd خلاصه می شود : که این مسئله حالتی از تغییر شکل کاملا با کشش می باشد . هم چنین زمانی که سطوح برجسته در حالت ارتجاعی خراشیده ( ساییده ) شوند ، احتمال دارد کنتاکتی را در بخش پسرو شاهد نباشیم : At = 0 . آنگاه از فرمول ( A3.2a ) رابطه ی ذیل حاصل می شود : اصطکاک از نوع تغییر شکل ( سایش فلزات ) در این مقاله در سطح وسیعی به کار گرفته شده است . ( در این راستا ، حالت سومی نیز به وجود دارد ، کنتاکت ویسکو الاستیک که واسطه ی بین کنتاکت کاملا با کشش و هم چنین کنتاکت کامل کششی به شمار می رود ؛ از سوی دیگر مولفه ی µd تا حدودی بیانگر ارتباط با 1 tan و هم چنین tan ، ضریب اتلاف سیکل تغییر شکل کنتاکت می باشد ) .معادله ی ( A3.1 ) بیان کننده ی سایش چسبندگی می باشد که ارتباط عمده ای با ویژگیهای قطعات کاری s و pr دارد ؛ هم چنین مولفه ی pr نیز وابسته به هندسه ی کنتاکت سطوح می باشد . در مقابل ، معادله ی ( A3.2b ) نشان دهنده ی سایش تغییر شکل ( دگر شکلی ) ساینده ها می باشد که در عین حال وابستگی زیادی با هندسه ی سطوح دارد ، البته تا حدی که زاویه ی 1 مشابه شیب قسمت پیشروی کنتاکت باشد ؛ اما در صورتی که توزیع فشار واقعی بیش از مولفه ی A1 در سطح یکنواختی قرار نداشته باشد ، این مسئله توسط ویژگیهای قطعات کاری تغییر داده خواهد شد . تمرکز عمده ی این پیوست معطوف مسائلی همچون بررسی و ارزیابی چگونگی نوسانات ضریب سایش با ویژگیهای قطعات کاری و هندسه ی کنتاکت در شرایط سایش دگر شکلی ، چسبندگی و هم چنین زمانی که این دو فرآیند با یکدیگر در هم آمیخته شوند ، می باشد .هم چنین پیش از گسترش مطالب این بخش ، ضروری است که به معرفی دو نکته ی بسیار مهم و ضروری در این زمینه پرداخته شود . فشار کنتاکت واقعی pr در معادله ی ( A3.1 ) مقدار طبیعی بخشی از قانون سایش و اصطکاک می باشد ؛ این در حالی است که در عمل این مقدار معادل فشار غیر واقعی ، هم چنین باری که به ظاهر یا غیر واقعی تقسیم بندی شده است ، می باشد ؛ از سوی دیگر ، کنتاکت حوزه ی An نیز در انواع متفاوت این نوع کاربرد مورد استفاده قرار می گیرد . در فصل 2 ، این نوع فشار تحت عنوان مولفه ی n مشخص شده است . در این راستا ، اولین نقطه از تعادل نیروی بار نتیجه گیری می شود که ضریب مولفه ی n تا مولفه ی pr مشابه ضریب واقعی تا منطقه ی کنتاکت ظاهری ( Ar / An ) می باشد : هم چنین ، نقطه ی دوم را می توان در فصل 2 مشاهده نمود که مولفه ی n با توجه به فشار جریان برش k در قطعات کار یا تراشه ها طبیعی به نظر می رسند . از سوی دیگر ، ضرایب بدون بعد pr / k و s / k در معادله ی ( A3.1 ) مورد بررسی قرار گرفته اند و ضرایب pr / k به تناسب / k n در معادله ی ذیل حذف شده اند : در بخشهایی که در ذیل بدان اشاره خواهد شد ، به بررسی دیدگاهی در رابطه با چگونگی سایش لغزشی می پردازیم که مرتبط با ویژگیهای قطعات کار در هندسه ی کنتاکت و هم چنین چگالی بارگیری می باشد ؛ در عین حال این مسئله با در نظر گرفتن تمرکز عمده بر چگونگی pr / k و هم چنین Ar / An در شرایط سایش دگر شکلی و چسبندگی متفاوت می باشد . در این راستا ، می توان جزئیات دقیق تری از مکانیزمهای کنتاکت را در تحقیقات استاندارد جانسون در سال 1985 جستجو نمود . هم چنین می توان برای این مبحث نیز منابعی را در نظر گرفت که به شکل خلاصه در ( KLJ Ch.x ) آورده شده است . A3.2 کنتاکت طبیعی در یک سطح زبر و ساده در فونداسیون ارتجاعیاولین گام در راستای ساخت دیدگاهی در جهت کنتاکت زبری ، بایستی بارگیری طبیعی یک سطح زبر و ساده در برابر یک سطح متقابل مسطح مورد ارزیابی قرار گیرد . در واقع ، در بارگیری های سبک ، احتمالا تغییر شکل و دگر شکلی ارتجاعی خواهد بود . این در حالی است که در فرآیند بارگیریهای سنگین تر ، احتمالا تغییر شکل ارتجاعی ادامه خواهد یافت . در عین حال ، هدف عمده ی این بخش ارزیابی چگونگی فرآیند انتقال از حالت ارتجاعی به حالت شکل پذیری ( پلاستیک ) می باشد که این مسئله متفاوت با ویژگیهای قطعات کار و هم چنین نوع و شکل حالت زبری می باشد ؛ هم چنین نوع فشارهای کنتاکت واقعی pr نیز مورد بررسی قرار خواهند گرفت . A3.2.1 کنتاکت ارتجاعیشکل A3.2 نشان دهنده ی سطوح زبر و ناهموار مشابه یک کره یا سیلندر شعاع R ایده آل یا همانند یک مخروط ضخیم یا لبه ی شیب تحت فشار یک سطح مسطح می باشد که خطوط تیره بیان کننده ی زبری و سطوح مسطح نافذ یکدیگر تا عمق می باشند ؛ البته در شرایطی که سطح دیگر در آنجا وجود نداشته باشد . در این راستا ، خطوط ثابت نیز بیانگر تغییر شکل و دگر شکلی می باشند که در عین حال نیازمند برطرف نمودن هر گونه نفوذ و رخنه ای می باشند . از سوی دیگر ، چگونگی تفاوت مولفه ی pr با پهنای کنتاکت 2a یا با ؛ هم چنین با مولفه های R یا ؛ با ضرایب یانگ ( YOUNG ) E1 یا E2 و ضریب پواسون ( POISSON ) و مولفه ی 2 زبری و سطوح متقابل نیز به ترتیب مورد ارزیابی قرار خواهند گرفت .در واقع ، کنتاکت کره ی ارتجاعی یا سیلندر در یک سطح مسطح با وجود فقدان برش سطوح مشترک تحت عنوان مسئله ی کنتاکت HERTZIAN شناخته شده می باشد . از سوی دیگر ، عملکرد و رویکرد بعدی در جهت شرایط کنتاکت ساده تر از آنالیز HERTZIAN ، ارائه دهنده ی دیدگاهی در این زمینه می باشد . در قسمت سمت چپ شکل A3.2 ، زبری سطوح توسط عمق 1 به صورت پهن تر و عمق 2 نیز بهصورت خطوط مسطح نشان داده شده اند ؛ البته این مسئله تا حدودی مطابق با همپوشانی کامل مولفه ی می باشد که ایجاد کننده ی پهنای کنتاکت 2a می باشد . با در نظر گرفتن هندسه ی همپوشانی ، فرض بر این است که مولفه ی 2a معادل کسر ثابت طول وتر 2ac می باشد ؛ البته در زمانی که رابطه ی aC < < R بر قرار باشد ، در عین حال ، تغییرات شکلی سطوح در سطوح زبر ، ناهموار و هم چنین سطوح مسطح منجر به کشیدگی زیر سطوح خواهد گردید ؛ این در حالی است که در سطوح زبر و ناهموار ، شاهد نسبت ضریب بدون بعد 1 / a می باشیم و در سطوح مسطح رابطه ی 2 / a را در پیش رو داریم . شکل A3.2 انواع تغییر شکلهای سطوح زبر ارتجاعیحداکثر نوع سطوح زبر c ، معادلات (A3.8) و (39) ( pr / max ) ( pr / max ) / cکره ای 042 26 62استوانه ای 039 22 56مخروطی 050 16 32گوه مانند 050 10 20 جدول A3.1 پارامترهای کنتاکت ارتجاعی برگرفته از جانسون ( سال 1985 ، CHs 4,5 )هم چنین زمانی که سطوح زبر ، ناهموار و مسطح مطابق با قانون هوک ( HOOK ) باشد ، میانگین فشار کنتاکت pr در نسبت ایجاد ضریب یانگ و هم چنین فشار در هر یک از موارد ذیل افزایش خواهد یافت :از دیدگاه سطوح زبر و ناهموار ، pr E1 ( 1 / a ) ( A3.5 ) از دیدگاه سطوح مسطح و صاف ، pr E2 ( 2 / a ) با ترکیب دو معادله ی ( A3.4 ) و ( A3.5 ) رابطه ی ذیل را پیش رو خواهیم داشت : در این راستا ، رابطه ی1 / E2 ) 1 / E* = ( 1 / E1 + و هم چنین ثابت تناسب مولفه ی c مستلزم آنالیز کامل هرتز ( HERTZ ) برای این نوع مشتق گیری می باشد . در واقع ، آنالیز کامل در این زمینه نشان دهنده ی تعریف صحیح و جامعی از مولفه ی E* که شامل ضریب پواسون می باشد : این در حالی است که مولفه ی c وابسته به نوع شکل مدور شعاع R می باشد که نشان دهنده ی زبری کلاهک ( سرپوش ) مدور یا کره ای می باشد ( برای اطلاعات بیشتر در این زمینه به جدول A3.1 رجوع نمایید ) . هم چنین ، فشار دو سطح زبر و ناهموار کره ای یا مدور با محورهای موازی شعاع R1 و R2 بوجود آورنده ی فشار کنتاکت طبیعی pr می باشند : از سوی دیگر ، کنتاکت ارتجاعی یک گوه یا مخروط در یک سطح مسطح ( قسمت سمت راست شکل A3.2 ( a ) ) نیز بوجود آورنده ی فشار کنتاکت pr ( KLJ Ch.5 ) می باشد : در عین حال به مولفه ی c در رابطه ی فوق در جدول A3.1 اشاره شده است . هم چنین کمیت های ( a / R* ) و تانژانت تحت عنوان معرف های فشارهای کنتاکت شناخته شده می باشند ؛ در این راستا ، توضیحات آن را می توان تحت عنوان میانگین شیب های کنتاکت که شاهد عملکرد آن خواهیم بود ، بیان شده است و با در نظر گرفتن مولفه ی pr شاهد افزایش آنان خواهیم بود . A3.2.2 کنتاکت شکل پذیر (پلاستیک) کاملشکل A3.3 نشان دهنده ی زبری گوه مانند بارگیری شده ی شکل پذیر در برابر یک سطح مشترک نرم ( شکل سمت چپ ) و سطح مشترک سختر ( شکل سمت راست ) می باشد ؛ از این رو ، این سطح برجسته و دندانه دار یا مسطح می باشد . از سوی دیگر وابستگی مولفه ی pr در شیب زبری و هم چنین فشار جریان برش k در قطعات کاری نرمتر نیز در این مقوله مورد ارزیابی قرار می گیرند ؛ البته با در نظر گرفتن نظریه ی حوزه ی خط لغزش ( پیوست 12 ) . در این زمینه ، حوزه ی ADE یک حوزه ی فشار واحد شناخته می شود و در عین حال نیز شرایط سطح آزاد همراه با AE مستلزم رابطه ی p1 = k می باشد . هم چنین ، حوزه ی ABC نیز یک فشار یکنواخت محسوب می شود . در این راستا ، تعادل نیروی طبیعی در طول AC رابطه ی ذیل را نتیجه می دهد : هم چنین ، خط لغزش EDBC نیز خط نامیده می شود ؛ در نتیجه رابطه ی ذیل را پیش رو داریم : در واقع وظیفه ی زاویه ی را می توان در محافظت از حجم جریان دانست : قطعات کار از سطوح مشترک میان سطوح مسطح و هم چنین سطوح زبر و ناصاف منتقل می شوند که بایستی در شانه های جریان قرار گیرند ؛ این در حالی است که مقادیر پایین و / 2 را شاهد می باشیم . از این رو ، با توجه به معادلات ( A3.11 ) و (A3.10 ) می توان رابطه ی ذیل را نتیجه گیری نمود : شکل A3.3 همسانی شکل پذیری با فشردگی سطوح زبر گوه مانندA3.2.3 انتقال از کنتاکت ارتجاعی به کنتاکت شکل پذیر (پلاستیک)بررسی های صورت گرفته در ارتباط با کنتاکت ارتجاعی و پلاستیکی در مطالب پیشین به صورت غیر بعدی مورد ارزیابی قرار گرفتند و از این رو مولفه ی pr را با توجه به مولفه ی k نتیجه گیری نمودیم . در شکل A3.4 ( a ) ، محاسبات و پیش بینی های نمونه ی ارتجاعی و پلاستیکی به صورت خطوط تیره نشان داده شده است ؛ هم چنین حرکت واقعی را می توان در خطوط ثابت جستجو نمود . دراین راستا ، انتقال از حرکت ارتجاعی در ابتدا در محدوده ی 1 < pr / k < 2.6 و در مقادیر (E*/k) (a /R* or tan صورت می گیرد . در عین حال ، مقادیر وابسته به نوع و شکل زبری می باشند ؛ که به این موارد در دو ستون انتهایی جدول A3.1 اشاره شده است .از سوی دیگر ، حالت کامل کنتاکت پلاستیکی در رابطه ی (E*/k)(a/R* or tan) بیش از مقادیر 50pr/k به چشم می خورد که این مسئله به روند افزایشی خود در تغییر شکلهای بالاتر بیش از سخت شدن فلزات در اثر تغییر شکل نسبی ادامه خواهد داد . ادامه خواندن مقاله A2.4.3 آناليز المان محدود تقريبي

نوشته مقاله A2.4.3 آناليز المان محدود تقريبي اولین بار در دانلود رایگان پدیدار شد.


Viewing all articles
Browse latest Browse all 46175

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>