Quantcast
Channel: دانلود فایل رایگان
Viewing all articles
Browse latest Browse all 46175

مقاله علوم و تکنولوژي هسته اي

$
0
0
 nx دارای 23 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است فایل ورد nx  کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد. این پروژه توسط مرکز nx2 آماده و تنظیم شده است توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي nx،به هيچ وجه بهم ريختگي وجود ندارد بخشی از متن nx : علوم و تکنولوژی هسته ای اگرچه امروزه نسبت به اینکه کدامیک از این قدرتهای چهارگانه حرف اول را می زند بحثهای مختلفی وجود دارد، اما بدون شک این چهار قدرت با هم ارتباط تنگاتنگ داشته و هر یک بر دیگری تأثیر (مسقتیم یا غیر مستقیم) خواهد داشت. علوم و تکنولوژی هسته ای از جمله مواردی است که در حال حاضر به صورت یک عامل مهم و تعیین کننده در هر یک از چهار مورد مذکور نقش ایفا می نماید. امروزه تأثیر تکنولوژی هسته ای در گسترش دانش بشری، تسلط بر طبیعت، تأمین رفاه و پیشرفت زندگی بشر غیر قابل تردید است و بدون شک کشورهای مختلف نیز هر یک برحسب توان خود به این تکنولوژی روی آورده اند و هر کشوری براساس مقتضیات زمانی و مکانی، استراتژی و تاکتیک خاصی را برای خود برمی گزیند.1- مقدمهانرژی هسته ای از عمده ترین مباحث علوم و تکنولوژی هسته ای است و هم اکنون نقش عمده ای را در تأمین انرژی کشورهای مختلف خصوصا کشورهای پیشرفته دارد. اهمیت انرژی و منابع مختلف تهیه آن، در حال حاضر جزء رویکردهای اصلی دولتها قرار دارد. به عبارت بهتر، از مسائل مهم هر کشور در جهت توسعه اقتصادی و اجتماعی بررسی ، اصلاح و استفاده بهینه از منابع موجود انرژی در آن کشور است. امروزه بحرانهای سیاسی و اقتصادی و مسائلی نظیر محدودیت ذخایر فسیلی، نگرانیهای زیست محیطی، ازدیاد جمعیت، رشد اقتصادی ، همگی مباحث جهان شمولی هستند که با گستردگی تمام فکر اندیشمندان را در یافتن راهکارهای مناسب در حل معظلات انرژی در جهان به خود مشغول داشته اند. در حال حاضر اغلب ممالک جهان به نقش و اهمیت منابع مختلف انرژی در تأمین نیازهای حال و آینده پی برده و سرمایه گذاریها و تحقیقات وسیعی را در جهت سیاستگذاری، استراتژی و برنامه های زیربنایی و اصولی انجام می دهند. هم اکنون تدوین استراتژی که مرکب از بررسی تمامی پارامترهای تأثیر گذار در انرژی و تعیین راهکارهای مناسب جهت تمیزتر و کارا ترنمودن انرژی و الگوی بهینه مصرف آن می باشد، در رأس برنامه های زیربنایی اکثر کشورهای جهان قرار دارد. در میان حاملهای مختلف انرژی،انرژی هسته ای جایگاه ویژه ای دارد. هم اکنون بیش از 430 نیروگاه هسته ای در جهان فعال می باشند و انرژی برخی کشورها مانند فرانسه عمدتا از برق هسته ای تأمین می شود.جمهوری اسلامی ایران بیش از سه دهه است که تحقیقات متنوعی را در زمینه های مختلف علوم و تکنولوژی هسته ای انجام داده و براساس استراتژی خود، مصمم به ایجاد نیروگاههای هسته ای به ظرفیت کل 6000 مگاوات تا سال 1400 هجری شمسی می باشد. در این زمینه، جمهوری اسلامی ایران در نشست گذشته آژانس بین المللی انرژی اتمی، تمایل خود را نسبت به همکاری تمامی کشورهای جهان جهت ایجاد این نیروگاهها و تهیه سوخت مربوطه رسما اعلام نموده است. 2- انرژی هسته ایانرژی بدست آمده از فعل و انفعالات هسته ای را انرژی هسته ای می گویند. این انرژی از دو منشاء می تواند سرچشمه بگیرد. یکی شکافت هسته اتمهای سنگین و دیگری همجوشی یا گداخت هسته اتمهای سبک . ذیلا به اختصار به این دو فعل و انفعال هسته ای که به تولید انرژی هسته ای منجر می گردند پرداخته می شود. 2-1) شکافت هسته ایپس از کشف نوترون توسط”چاودیک” در سال 1932، هان و استراسمن، دانشمندان آلمانی، در سال 1939 طی مقاله ای نشان دادند که این ذره می تواند عناصر سنگینی از قبیل اورانیوم را شکافته و آنها را به عناصر دیگر با جرم کمتر تبدیل نماید. شکافت اورانیوم که علاوه بر آزادسازی انرژی یا گسیل چند نوترون نیز همراه می شود، منشا تحولات بسیاری در قرن اخیر شده است. در طی تحقیقاتی که در قبل از جنگ جهانی دوم بویژه در فرانسه و آلمان انجام گرفت، محقق گشت که نوترونهای آزاد شده می توانند تحت شرایط مناسب برای ایجاد شکافت در دیگر هسته های اورانیوم مورد استفاده قرار گیرند و بدین ترتیب یک واکنش زنجیره ای را می توان آغاز نمود که باعث آزادسازی مقدار قابل ملاحظه ای انرژی گردد. این شکافت بیشتر مربوط به 235-U (اورانیوم با جرم اتمی 235) بود و وجود یک حداقل جرمی از اورانیوم برای یک واکنش زنجیره ای لازم به نظر می رسید. این حداقل را جرم بحرانی نامیدند. در طول جنگ جهانی دوم، این تحقیقات در کشورهای انگلستان، کانادا و عمدتا آمریکا ادامه یافت و نتیجتا به ساخت اولین راکتور اتمی در زیرزمین دانشگاه شیکاگو توسط فرمی و چندی بعد به تولید اولین بمب اتمی منجر گردید که بطور موفقیت آمیزی فجایع اسف بار هیروشیما و ناکازاکی را بوجود آورد. راکتور اتمی نمونه بارز استفاده صلح آمیز از انرژی اتمی بود در حالیکه بمب اتمی بوضوح استفاده غیرصلح آمیز آن را آشکار می ساخت. بهرحال هر دوی این فرایندها به تولید انرژی هسته ای که ناشی از شکافت هسته اتمهای سنگین بود منجر گشتند، البته یکی کنترل شده(راکتور اتمی) و دیگری کنترل نشده (بمب اتمی) به حساب می آمد.به هر حال شکافت هسته های سنگین به دو هسته سبکتر، همراه با آزاد شدن مقادیر زیادی انرژی است و این فرایند تنها در هسته های سنگینی چون اورانیوم و پلوتونیوم اتفاق می افتد. از بین ایزوتوپهای اورانیوم و پلوتو نیوم نیز U-235 ، Pu-239 وPu-241 قابلیت شکافت را دارند تا ایزوتوپهای دیگر. برای ایجاد شکافت مناسب، باید واکنش هسته ای بصورت زنجیره وار و پیوسته انجام گردد وگرنه نتیجه مطلوب حاصل نخواهد گردید.در یک واکنش زنجیره ای هسته ای، ابتدا یک نوترون با انرژی مشخص و سرعت مورد نظر به هسته قابل شکافت مثل 235- U برخورد می کند. نتیجه این برهم کنش، نفوذ نوترون به داخل هسته بوده و با برهم خوردن توازن نیروهای جاذبه و دافعه، هسته سنگین به دو هسته شکسته شده و همراه با آن مقادیر زیادی انرژی و چندین نوترون سریع آزاد می گردد. متوسط تعداد نوترونهای تولید شده در شکافت 235- U حدود 5/2 و در 239-PU حدودا 3 درجه می باشد. هرکدام از این نوترونها با برخورد با هسته های دیگر موجب آزاد شدن انرژی و چندین نوترون دیگر خواهند شد. چنانچه شرایط مهیا باشد، این واکنش بطور زنجیره وار ادامه می یابد تا زمانیکه به عللی از جمله کاهش جرم ماده شکافت پذیر متوقف گردد. تعداد نوترونهای ناشی از شکافت را اصطلاحا تحت عنوان فاکتور تکثیر می شناسد و به K نمایش می دهند چنانچه 1< K باشد در این صورت سیستم فوق بحرانی خواهد بود و تکثیر نوترونها و آزاد شدن انرژی با سرعتی بیش از حد تصور ادامه می یابد و این همان فرآیندی است که در سلاحهای هسته ای روی می دهد. چنانچه1= K باشد سیستم را بحرانی می نامند. به عبارت بهتر به ازای هر نوترونی که به هر دلیل در سیستم مصرف و یا از آن خارج می گردد یک نوترون در نتیجه شکافت تولید می شود. اگر 1>K باشد سیستم را زیر بحرانی می دانند. در این سیستم تولید نوترونها در مجموع روبه کاهش رفته و نهایتا فعل و انفعالات هسته ای در سیستم متوقف خواهد گردید. به فرض اینکه 2=K باشد، پس تولید نوترونها در اثر شکافتهای زنجیره ای بصورت تصاعدی 32،16،8،4،2 و ; خواهد بود. در این حالت چنانچه جرم 235- U، یک کیلوگرم (Kg ) بوده و این شکافتها تا 80 بار ادامه یابند، انرژی معادل 20 کیلوتن TNT در زمانی کمتر از1us آزاد خواهد گردید. 2-2) همجوشی یا گداخت هسته ایهم جوشی یا گداخت هسته ای را می توان به عنوان فرایند عکس شکافت هسته ای قلمداد کرد، یعنی فرایندی که در آن دست کم یکی از محصولات واکنش هسته ای ازهر یک ازمواد واکنش زای اولیه پر جرمتر باشد . گداخت هسته ای در مواردی که جرم کل هسته های محصول از جرم کل مواد واکنش زاکمتر باشد منجر به رهایی انرژی خواهد شد. این شرط برای هسته های سبک یا اعداد جرم A1 و A2 که برای آنها 60> (A2+A1) باشد، همیشه برقرار است. فعل و انفعالاتی که در ستاره ها رخ می دهد و منجر به تولید انرژی بسیار زیادی می گردد، شناخته شده ترین و بارزترین نمونه های همجوشی یا گداخت هسته ای است. این واکنشها که عموما به زنجیره پروتون – پروتون موسوم می باشند با واکنشی بین دو پروتون و تشکیل یک دوتریوم آغاز می شود. سپس با واکنش یک پروتوم و دوتریوم و تشکیل 3He ادامه یافته و نهایتا با واکنش دو اتم 3He و تشکیل 4He خاتمه می یابد. دراین فرایند حدود 7/24 Mev انرژی آزاد می گردد. برای شبیه سازی همین واکنش در روی زمین تحقیقات بسیاری از اواسط قرن بیستم میلادی انجام گرفته است و هنوز نیز ادامه دارد. دراین تحقیقات مشخص گردید که سطح مقطع واکنش بین دوتریوم (2H) و تریتیوم (3H) و همچنین مقدار انرژی آزاد شده به ازای هر اتمی که در آن واکنش شرکت دارد خیلی بیشتر از واکنشهای مذکور می باشد. در این واکنش در نتیجه همجوشی بین دو تریوم و تریتیوم یک اتم هلیوم همراه با یک نوترون و حدود 6/17 Mev انرژی آزاد می گردد. گداخت هسته ای را سرچشمه انرژی فردا می دانند و گمان می رود سوخت یک راکتور گداخت هسته ای همانطور که بیان گردید مخلوطی از دو تریوم و تریتیوم باشد. واکنش همجوشی بین این دو ماده در دمای حدود 10 به توان 7 درجه سانتیگراد صورت می گیرد و گرمای تولید شده بواسطه همجوشی آنها باعث واکنشهای گداخت دیگر نیز خواهد گردیدو این امر یک سری واکنشهای زنجیره ای را بوجود خواهد آورد که می توان با استفاده از انرژی بسیار زیاد تولید شده، توربینهای مولد برق را بکار انداخت. از محسنات راکتورهای گداخت، درجه بالای ایمنی آنهاست و برخلاف راکتورهای شکافت هسته ای که پسمانهای رادیو اکتیو بسیاری تولید می کنند، پسمان راکتورهای گداخت مقدار کمی هلیوم غیر رادیواکتیو است. البته در واکنش همجوشی هسته ای، طبق آنچه بیان گردید، نوترون نیز تولیدمی شود که می تواند به مرور راکتور را رادیو اکتیو کند ولی با انتخاب مواد مناسب می توان به جذب نوترونها اقدام نمود و در نتیجه این مسئله نیز مرتفع خواهد گردید. در حال حاضر دستگاهی که فعل و انفعالات گداخت هسته ای در آن بوقوع می پیوندد تحت عنوان توکامک شناخته می شود پیش بینی ها از دهه 2020 میلادی به عنوان نقطه آغاز به کار راکتورهای تحاری هم جوشی هسته ای حکایت دارند. 3- کاربردهای علوم و تکنولوژی هسته ایعلیرغم پیشرفت همه جانبه علوم و فنون هسته ای در طول نیم قرن گذشته، هنوز این تکنولوژی در اذهان عمومی ناشناخته مانده است. وقتی صحبت از انرژی اتمی به میان می آید، اغلب مردم ابر قارچ مانند حاصل از انفجارات اتمی و یا راکتورهای اتمی برای تولید برق را در ذهن خود مجسم می کنند و کمتر کسی را می توان یافت که بداند چگونه جنبه های دیگری از علوم هسته ای در طول نیم قرن گذشته زندگی روزمره او را دچار تحول نموده است. اما حقیقت در این است که در طول این مدت در نتیجه تلاش پیگیر پژوهشگران و مهندسین هسته ای، این تکنولوژی نقش مهمی را در ارتقاء سطح زندگی مردم، رشد صنعت و کشاورزی و ارائه خدمات پزشکی ایفاء نموده است. موارد زیر از مهمترین استفاده های صلح آمیز از علوم و تکنولوژی هسته ای می باشند:1- استفاده از انرژی حاصل از فرآیند شکافت هسته اورانیوم یا پلوتونیوم در راکتورهای اتمی جهت تولید برق و یا شیرین کردن آب دریاها.2-استفاده از رادیوایزوتوپها در پزشکی، صنعت و کشاورزی 3- استفاده از پرتوهای ناشی از فرآیندهای هسته ای در پزشکی، صنعت و کشاورزیایزوتوپهای یک عنصر، هسته هایی شامل تعداد پروتونهای یکسان و تعداد نوترونهای متفاوت می باشند.یکسان بودن عدد اتمی در ایزوتوپها باعث گشته که خواص شیمیایی و بعضا فیزیکی یکسان داشته باشند اما در عین حال خواص هسته ای متفاوتی دارند. در حالیکه بطور طبیعی اکثر ایزوتوپهای موجود از پایداری نسبی برخوردار هستند، اما ایزوتوپهای ساخته دست انسان، عمدتا غیرپایدار می باشند. پایداری یک ایزوتوپ توسط نیمه عمر آن تعیین می گردد و نیمه عمر زمانی است که مقدار یک ایزوتوپ از طریق تلاشی به نصف می رسد. نیمه عمرها می توانند از کسری از ثانیه تا صدها میلیون سال تغییر یابند. ایزوتوپهای رادیواکتیو(رادیوایزوتوپها) زمانیکه متلاشی می گردند سه نوع تابش را منتشر می سازند:1- ذرات آلفا که دارای بار مثبت بوده و مرکب از دو پروتون و دو نوترون هستند(++4He)2- ذرات بتا که الکترونهای انرژتیک با بار منفی یا پوزیترونها با بار مثبت می باشند3- تابشهای گاما که بدون بار بوده و بسیار نافذ هستند.برخی از عناصر رادیواکتیو مثل رادیوم و یا ایزوتوپهای رادیواکتوی مثل 235-U در طبیعت یافت می شوند ولی اکثر آنها در راکتورهای اتمی و یا بوسیله شتابدهنده ها تولید می گردند. 82-Br و58- Co و131-Iو32-Pو42-Kو111-Agو64-Cuو38-Cl از مهمترین رادیو ایزوتوپهای تولید شده در راکتورهای اتمی می باشند و از آن طرف رادیو ایزوتوپهای 7-Beو206-Biو18-Fو132-I د ر شتابدهنده ها ساخته می شوند. امروزه از رادیو ایزوتوپها و پرتوهای ناشی از فرایندهای هسته ای جهت بهبود محصولات غذایی، نگهداری مواد غذایی، تعیین منابع آبهای زیرزمینی، استرلیزه کردن منابع و تولیدات پزشکی، آنالیز هورمونها، کنترل فرایندهای صنعتی و بررسی آلودگی محیط زیست استفاده فراوانی به عمل می آید.تولید گونه هایی از محصولات غذایی دارای حاصلخیزی بیشتر، تولید گونه های مقاوم نسبت به آفات و کم آبی، استفاده موثر تر از منابع آبی و جمع آوری آنها، کنترل نابودی آفات، جلوگیری از فساد محصولات در هنگام نگهداری، از مهمترین موارد استفاده از علوم و تکنولوژی هسته ای در کشاورزی است. کاربرد روشهای هسته ای در علوم پزشکی نسبت به سایر بخشها معروفتر و عمومی تر است. بیش از 100 سال است که دانشمندان با خواص اشعه ایکس آشنا شده اند و از آن برای تشخیص پزشکی استفاده می کنند. تصویربرداری، تشخیص، پیش بینی و درمان برخی بیماریها در نتیجه استفاده از پرتودهی و رادیوایزوتوپها حاصل می گردد. بطور مثال ید 131(131-I) برای تشخیص محل و مکان تومورهای مغزی مورد استفاده قراز می گیرد و یا از آن برای تعیین فعالیت غده تیروئید و کبد استفاده می شود. کرم -51(51-Cr ) برای تحقیقات خون شناسی، 75-Se برای بررسی لوزالمعده، 57- Co برای تشخیص کم خونی، 14-C برای تحقیقات بیولوژیکی و داروسازی، 137- Cs جهت درمان غدد سرطانی، 67-Cu برای از بین بردن غدد سرطانی از رایج ترین رادیوداروها در امر پزشکی می باشند. استفاده از پرتو گاما تولید شده از کبالت -60(60-Co ) از موثرترین و مقرون به صرفه ترین روشها در زمینه سترون نمودن وسایل، ابزار آلات و تولیدات پزشکی است.طی نیم قرن گذشته، تکنولوژی هسته ای کاربردهای گسترده ای در صنعت یافته است. تسهیل عملیات اکتشاف و استخراج معادن زیرزمینی نفت و گاز، تشخیص محل نشت سیالات در لوله ها و مخازن، تعیین میزان خوردگی فلزات، اندازه گیری دقیق قطرسنجی، ضخامت سنجی و سطح سنجی، تعیین فرسودگی غشاء داخلی کوره های صنعتی، استفاده از اثرات متقابل پرتوها با مواد جهت بهینه سازی عملکرد آنها در صنعت و; تماما از مهمترین استفاده های صنعت از علوم و فنون هسته ای است. در این زمینه بطور مثال 241- Am جهت تعیین محل حفاری چاههای نفت، 109- Cd جهت آزمایش عیار فلزات، 14- C برای تحقیقات باستان شناسی، 85- Kr جهت اندازه گیری ضخامت صفحات و الیاف بکار می روند.4- برق هسته ایاز مهمترین منابع استفاده صلح آمیز از انرژی اتمی، ساخت راکتورهای هسته ای جهت تولید برق می باشد. راکتورهسته ای وسیله ای است که در آن فرایند شکافت هسته ای بصورت کنترل شده انجام می گیرد. در طی این فرایند انرژی زیاد آزاد می گردد به نحوی که مثلا در اثر شکافت نیم کیلوگرم اورانیوم انرژی معادل بیش از 1500 تن زغال سنگ بدست می آید. هم اکنون در سراسر جهان، راکتورهای متعددی در حال کار وجود دارند که بسیاری از آنها برای تولید قدرت و به منظور تبدیل آن به انرژی الکتریکی، پاره ای برای راندن کشتیها و زیردریائیها، برخی برای تولید رادیو ایزوتوپوپها و تحقیقات علمی و گونه هایی نیز برای مقاصد آزمایشی و آموزشی مورد استفاده قرار می گیرند. در راکتورهای هسته ای که برای نیروگاههای اتمی طراحی شده اند (راکتورهای قدرت)، اتمهای اورانیوم و پلوتونیم توسط نوترونها شکافته می شوند و انرژی آزاد شده گرمای لازم را برای تولید بخار ایجاد کرده و بخار حاصله برای چرخاندن توربینهای مولد برق بکار گرفته می شوند. راکتورهای اتمی را معمولا برحسب خنک کننده، کند کننده، نوع و درجه غنای سوخت در آن طبقه بندی می کنند. معروفترین راکتورهای اتمی، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده(2 تا 4 درصد اورانیوم 235) به عنوان سوخت استفاده می کنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک(LWR ) شناخته می شوند. راکتورهای WWER,BWR,PWR از این دسته اند. نوع دیگر، راکتورهایی هستند که از گاز به عنوان خنک کننده، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده می کنند. این راکتورها به گاز- گرافیت معروفند. راکتورهای HTGR,AGR,GCR از این نوع می باشند. راکتور PHWR راکتوری است که از آب سنگین به عنوان کندکننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده می کند. نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار می باشد. مابقی راکتورها مثل FBR (راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده می باشد) LWGR(راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده می کند) از فراوانی کمتری برخوردار می باشند. در حال حاضر، راکتورهای PWR و پس از آن به ترتیب PHWR,WWER,BWR فراوانترین راکتورهای قدرت در حال کار جهان می باشند. به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت “وستینگهاوس” و به منظور استفاده در زیر دریائیها ساخته شد. ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمیPWR را تشکیل داد. سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید. اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده، توسط شوروی و در ژوئن 1954در “آبنینسک” نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت، تولید الکتریسیته از راکتورهای اتمی در مقیاس صنعتی در سال 1956 در انگلستان آغاز گردید. تا سال 1965 روند ساخت نیروگاههای اتمی از رشد محدودی برخوردار بود اما طی دو دهه 1966 تا 1985 جهش زیادی در ساخت نیروگاههای اتمی بوجود آمده است. این جهش طی سالهای 1972 تا 1976 که بطور متوسط هر سال 30 نیروگاه شروع به ساخت می کردند بسیار زیاد و قابل توجه است. یک دلیل آن شوک نفتی اوایل دهه 1970 می باشد که کشورهای مختلف را برآن داشت تا جهت تأمین انرژی مورد نیاز خود بطور زاید الوصفی به انرژی هسته ای روی آورند. پس از دوره جهش فوق یعنی از سال 1986 تاکنون روند ساخت نیروگاهها به شدت کاهش یافته بطوریکه بطور متوسط سالیانه 4 راکتور اتمی شروع به ساخت می شوند.کشورهای مختلف در تولید برق هسته ای روند گوناگونی داشته اند. به عنوان مثال کشور انگلستان که تا سال 1965 پیشرو در ساخت نیروگاه اتمی بود، پس از آن تاریخ، ساخت نیروگاه اتمی در این کشور کاهش یافت، اما برعکس در آمریکا به اوج خود رسید. کشور آمریکا که تا اواخر دهه 1960 تنها 17 نیروگاه اتمی داشت در طول دهه های 1970و 1980 بیش از 90 نیروگاه اتمی دیگر ساخت. این مسئله نشان دهنده افزایش شدید تقاضای انرژی در آمریکاست. هزینه تولید برق هسته ای در مقایسه با تولید برق از منابع دیگر انرژی در امریکا کاملا قابل رقابت می باشد. هم اکنون فرانسه با داشتن سهم 75 درصدی برق هسته ای از کل تولید برق خود درصدر کشورهای جهان قرار دارد. پس از آن به ترتیب لیتوانی(73درصد)، بلژیک(57درصد)، بلغارستان و اسلواکی(47درصد) و سوئد (8/46درصد) می باشند. آمریکا نیز حدود 20 درصد از تولید برق خود را به برق هسته ای اختصاص داده است.گرچه ساخت نیروگاههای هسته ای و تولید برق هسته ای در جهان از رشد انفجاری اواخر دهه 1960 تا اواسط 1980 برخوردار نیست اما کشورهای مختلف همچنان درصدد تأمین انرژی مورد نیاز خود از طریق انرژی هسته ای می باشند. طبق پیش بینی های به عمل آمده روند استفاده از برق هسته ای تا دهه های آینده همچنان روند صعودی خواهد داشت. در این زمینه، منطقه آسیا و اروپای شرقی به ترتیب مناطق اصلی جهان در ساخت نیروگاه هسته ای خواهند بود. در این راستا، ژاپن با ساخت نیروگاههای اتمی با ظرفیت بیش از 25000 مگا وات درصدر کشورها قرار دارد. پس از آن چین، کره جنوبی، قزاقستان، رومانی، هند و روسیه جای دارند. استفاده از انرژی هسته ای در کشورهای کاندا، آرژانتین، فرانسه، آلمان، آفریقای جنوبی، سوئیس و آمریکا تقریبا روند ثابتی را طی دو دهه آینده طی خواهد کرد.5- چرخه سوخت هسته ایاورانیوم متداولترین سوخت برای راکتورهای هسته ای است. در مقایسه با اورانیوم، کاربرد توریوم و پلوتونیوم خیلی محدودتر است. اورانیوم را می توان به صورت خالص یعنی اورانیوم فلزی یا به صورت ترکیب مثل اکسید اورانیوم(UO2) و یا کربوراورانیوم(CU) بکار برد، اما اکسید اورانیوم متداولترین ماده برای سوخت راکتورهای تجاری است. اورانیوم به طور طبیعی به شکل مخلوطی از اکسیدهای مختلف است که به طور وسیعی در پوسته زمین به صورتهای پراکنده یافت می شود. غلظت اورانیوم در پوسته زمین حدود 2ppm است که نشاندهنده فراوانی آن حتی بیشتر از عناصری مثل جیوه و نقره می باشد.برای استفاده از اورانیوم به عنوان سوخت، ابتدا باید آنرا از سنگهای معدنی استخراج و جداسازی نمود (مرحله فراوری سنگ معدن اورانیوم). سپس با تبدیل و غنی سازی ، آنرا آماده برای تهیه سوخت کرد(مرحله تبدیل و غنی سازی اورانیوم). پس از آن با روشهای شیمیایی و فیزیکی مختلف به تولید سوخت هسته ای مناسب مبادرت نمود(مرحله تولید سوخت هسته ای) و نهایتا پس از استفاده سوخت در راکتوراتمی به بازفرآوری سوخت مصرف شده و جداسازی اورانیوم، پلوتونیوم و محصولات شکاف دیگر پرداخت(مرحله بازفرآوری). به مجموعه این فرایندها، چرخه سوخت هسته ای گفته می شود. بعبارت بهتر، به مجموعه فرایندها و مراحل تولید سوخت هسته ای تا مصرف و سپس بازفرآوری آن چرخه سوخت هسته ای می گویند. لفظ چرخه بدان جهت بکار می رود که عناصر شکاف پذیر پس از مصرف در راکتورهای هسته ای تحت بازفرآوری قرار گرفته و مجددا برای مصرف آماده می گردند. مراحل مختلف چرخه سوخت هسته ای عبارتند از:1- فراوری سنگ معدن اورانیوم2- تبدیل و غنی سازی اورانیوم3- تولید سوخت هسته ای4- بازفرآوریهم اکنون به لحاظ صنعتی، کشورهای فرانسه، ژاپن، روسیه، آمریکا و انگلستان دارای تمامی مراحل تکنولوژی فراوری اورانیوم در تمامی مراحل چرخه سوخت هسته ای در اشل صنعتی می باشند. چنانچه اشل غیرصنعتی منظور گردد، کشورهای دیگری مثل هند نیز به لیست فوق اضافه خواهند شد. کشورهای کانادا و فرانسه در مجموع دارای بزرگترین کارخانه های تبدیل اورانیوم هستند که محصولات آنها شامل UO3,UO2,UF6 می باشند، پس از آنها به ترتیب کشورهای امریکا، روسیه و انگلستان قرار دارند. در زمینه غنی سازی، بی تردید امریکا و روسیه دارای بزرگترین شبکه غنی سازی جهان می باشند. در اشل صنعتی این دو کشور کار غنی سازی را از سال 1945 در امریکا و 1949 در شوروی آغاز نموده اند. پس از آنها، به ترتیب فرانسه، هلند و انگلستان بیشترین غنی سازی را انجام می دهند. درحال حاضر، امریکا بزرگترین تولید کننده سوخت هسته ای در جهان است که تمامی سوخت آن جهت استفاده در نیروگاههای BWR,PWR می باشد. پس از امریکا، کانادا تولید کننده اصلی سوخت هسته ای در جهان(برای راکتورهای PHWR) می باشد. به نظر می رسد کشور کانادا از پرسابقه ترین کشورها جهت تولید سوخت هسته ای است که فعالیت خود را در این زمینه از سال 1956 آغاز نموده است. پس از امریکا و کانادا، کشورهای انگلستان، روسیه ، ژاپن، فرانسه، آلمان، هند، کره جنوبی و سوئد تولید کنندگان اصلی سوخت هسته ای می باشند. در زمینه بازفرآوری سوخت مصرف شده، امریکا بیشترین سهم بازفراوری سوخت هسته ای را در جهان داراست. پس از آن فرانسه، انگلستان، روسیه، هند و ژاپن قرار دارند. درحال حاضر بین کشورهای جهان سوم، هندوستان پیشرفته ترین کشور در زمینه دانش فنی چرخه سوخت هسته ای می باشد.انرژی شکافت هسته‌ای کشف انرژی هسته‌ای در جریان جنگ جهانی دوم صورت گرفت و اکنون برای شبکه برق بسیاری از کشورها هزاران کیلو وات تهیه می کند (نیرو گاه هسته ای). بحران انرژی بر اثر بالارفتن قیمت نفت در سال 1973 استفاده از انرژی شکافت هسته‌ای بیشتر وارد صحنه کرد. در حال حاضر ممالک اروپایی انرژی هسته‌ای را تنها انرژی می‌داند. که می‌تواند در اکثر موارد جایگزین نفت شود. استفاده از انرژی شکافت هسته‌ای که بر روی یک ماده قابل احتراق کانی که بصورت محدود پایه گذاری می‌شود. برای سایر کشورها خطرات بسیار دارد در حال حاضر تولید الکتریسته با استفاده از شکافت هسته‌ای کنترل شده به میزان زیادی توسعه یافته و مورد قبول واقع شده است. تولید انرژی هسته‌ای در کشورهای توسعه یافته بخش مهمی از طرح انرژی ملی را تشکیل می‌دهد. انرژی بستگی هسته‌ای می‌توان تصور کرد که جرم هسته ، M ، با جمع کردن Z (تعداد پروتونها) ضربدر جرم پروتون و N تعداد نوترونها ضربدر جرم نوترون بدست می‌آید.M = Z×Mp + N×Mn از طرف دیگر M همیشه کمتر از مجموع جرمهای تشکیل دهنده‌های منزوی هسته است. این اختلاف به توسط فرمول انیشتین توضیح داده می‌شود که رابطه بین جرم و انرژی هم ارزی جرم و انرژی را برقرار می‌سازد. اگر یک دستگاه مادی دارای جرم باشد در این صورت دارای انرژی کلی E است. E = M C2 که در آن C سرعت نور در خلا و M جرم کل هسته مرکب از نوکلئونها و E مقدار انرژیی است که در اثر فروپاشی جرم M تولید می‌شود. بنابر این اصول انرژی هسته‌ای بر آزاد سازی انرژی پیوندی هسته استوار است. هر سیستمی که دارای انرژی پیوندی بیشتر باشد پایدار می‌باشد. در واقع جرم مفقود شده در واکنشهای هسته‌ای طبق فرمول E = M C2 به انرژی تبدیل می‌شود. پس انرژی بستگی اختلاف جرم هسته و جرم نوکلئونهای تشکیل دهنده آن است، که معرف کاری است که باید انجام شود تا نوکلئونها از هم جدا شوند. مواد شکافتنی مواد ناپایدار برای اینکه به پایداری برسند، انرژی گسیل می‌کنند تا به حالت پایدار برسد. معمولا عناصری شکافت پذیر هستند که جرم اتمی آنها بالای 150 باشد ،235U و 238U در معادن یافت می‌شود. 993 درصد اورانیوم معادن 238U می‌باشد.و تنها 7% آن 235U می‌باشد. از طرفی 235U با نوترونهای کند پیشرو واکنش نشان می‌دهد. 238Uتنها با نوترونهای تند کار می‌کند، البته خوب جواب نمی‌دهد. بنابر این در صنعت در نیروگاههای هسته‌ای 235U به عنوان سوخت محسوب می‌شود. ولی به دلایل اینکه در طبیعت کم یافت می‌شود. بایستی غنی سازی اورانیوم شود، یعنی اینکه از 7 درصد به 1 الی 3 درصد برسانند. شکافت 235U در این واکنش هسته‌ای وقتی نوترون کند بر روی 235U برخورد می کند به 236U تحریک شده تبدیل می‌شود. نهایتا تبدیل به باریوم و کریپتون و 3 تا نوترون تند و 177 Mev انرژی آزاد می‌شود. پس در واکنش اخیر به ازای هر نوکلئون حدود 1 Mev انرژی آزاد می‌شود. در واکنشهای شیمیایی مثل انفجار به ازای هر مولکول حدود 30 Mev انرژی ایجاد می‌شود. لازم به ذکر است در راکتورهای هسته‌ای که با نوترون کار می‌کند، طبق واکنشهای به عمل آمده 2 الی3 نوترون سریع تولید می‌شود. حتما این نوترونهای سریع باید کند شوند.سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ 235U به مقدار 07 درصد و 238U ‏به مقدار 399 درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و ‏بعد از تخلیص فلز ، اورانیوم را بصورت ترکیب با اتم فلوئور (9F ) و بصورت مولکول ‏اورانیوم هگزا فلوراید تبدیل می‌کنند که به حالت گازی است. سرعت متوسط ‏مولکولهای گازی با جرم مولکولی گاز نسبت عکس دارد. ادامه خواندن مقاله علوم و تکنولوژي هسته اي

نوشته مقاله علوم و تکنولوژي هسته اي اولین بار در دانلود رایگان پدیدار شد.


Viewing all articles
Browse latest Browse all 46175

Trending Articles