nx دارای 15 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد nx کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
این پروژه توسط مرکز nx2 آماده و تنظیم شده است
توجه : در صورت مشاهده بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي nx،به هيچ وجه بهم ريختگي وجود ندارد
بخشی از متن nx :
تصاویر در مهندسی پزشکی
خلاصه :ناحیه بندی تصویر در مورد تصاویر تشدید مغناطیسی (MRI ) کمک بسیاری در تحلیل این تصاویر به پزشکان می کند ، ولی متاسفانه تصاویر MRI همواره همراه با نویز شدید ناشی از عملکرد اپراتور ، عملکرد دستگاه و یا نویز محیطی می باشند که باعث کاهش دقت در ناحیه بندی می شود .
یکی از روشهایی که در مورد ناحیه بندی بسیار استفاده می شود روش fuzzy c-means (fcm ) است که نسبت به نویز پایداری از خود نشان نمی دهد ، در این مقاله سعی در بهبود عملکرد FCM با استفاده از معیار نزدیکی پیکسل ها به هم ( همسایگی آنها ) و همچنین میزان شباهت ویژگی ها به هم ( میزان شباهت کنتراست ) می باشیم ، به این منظور دو ضریب و در تابع هزینه مربوطه به FCM تعریف کرده و با استفاده از الگوریتم ژنتیک سعی در پیدا کردن مقدار بهینه آنها خواهیم بود .مقدمه :
امروزه یکی از کاربردهای پردازش تصاویر در مهندسی پزشکی ، تحلیل تصاویر پزشکی توسط کامپیوتر و تشخیص بیماری یا سلامت به طور هوشمند توسط کامپیوتر می باشد ، به منظور تحلیل هر چه بهتر این تصاویر نیاز به ناحیه بندی در تصاویر داریم و در واقع با ناحیه بندی تصاویر کار سیستم هوشمند را دقیق تر می کنیم و مشخص می کنیم که در هر ناحیه باید به دنبال چه چیزی باشد ، اما ناحیه بندی تصویر با توجه به طبیعت تصاویر پزشکی و اثرات نویز کاری دشوار می باشد .
تصویر برداری MRZ یکی از راههای تشخیص موارد معیوب و یا دچار مشکل در اندامهای مختلف است و در واقع MRZ تصاویر با رزولوشن بالا از اندامهای مختلف در اختیار ما می گذارد و به علت استفاده فراوان از این روش در تصویر برداری های پزشکی، امروزه تلاش زیادی در بهبود این تصاویر و به خصوص ناحیه بندی آنها انجام می شود.روشهای مختلفی به منظور ناحیه بندی این تصاویر پیشنهاد شده اند مانند روشهای آستانه گذاری، توسعه یک ناحیه و روشهای کلاسترینگ روشهای آستانه گذاری به علت ساختار پیچید مغز بسیار پیچیده بوده و روشهای توسعه یک ناحیه هم دارای محدودیت های خاص خود می باشد. روشی که برای ناحیه بندی بسیار استفاده می شود روشهای کلاسترینگ مبتنی بر FMC می باشند.
مطالعات و شبیه سازیها نشان داده است که روش FCM در مورد تصاویر مغز نرمال عملکرد خوبی از خود نشان می دهد ولی در مورد مغزهای معیوب و دارای تومور عملکرد خوبی ندارد در واقع بزرگترین مشکل هم FCM حساسیت بسیار بالای آن نسبت به نویز می باشد و از آنجا که تصاویر پزشکی همواره همراه با نویز هستند میزان صعت عملکرد FCM کاهش می یابد. روشی که در اینجا به منظور افزایش پایداری نسبت به نویز مطرح می شود استفاده از دو فاکتور اساسی در ناحیه بندی می باشد. فاکتور اول تفاوت ویژگی ها در پیکسل های همسایه و فاکتور دوم وابستگی مکانی پیکسل های همسایه است، پس در این حالت عمل ناحیه بندی تنها به ویژگی خود پیکسل وابستگی ندارد، بلکه به ویژگی و مکان پیکسل هیا همسایه هم بستگی پیدا می کند.
الگوریتمFCM :فرض می کنیم تعداد بردارهای ورودی N باشد و آنها را با {X1,X2,…,XN} نمایش دهیم و همچنین تعداد کلاسهای موجود m باشد در این صورت برای هر دو بردار ورودی m تابع عضویت تعریف می کنیم که هر تابع عضویت بیانگر میزان عضویت آن بردار خاص به هر کدام از کلاسها می باشد، این توابع عضویت را با uij نمایش می دهیم که بیانگر میزان ورودی i ام به کلاس jام می باشد و شروط زیر را هم داریم:
با استفاده از Uij ها ماتریس U را می سازیم که ماتریس عضویت نامیده می شود، تابع هزینه را بصورت زیر تعریف می کنیم:
در رابطه فوق بیانگر مرکز کلاس j ام می باشد و ( j d(xi, بیانگر میزان عدم شباهت ورودی xi به کلاس j ام می باشد، هر چه میزان عدم شباهت کمتر باشد تابع عضویت Uij باید مقدار بزرگتری اختیار کند.هدف ما در نهایت کمینه کردن تابع هزینه می باشد. برای حل مساله بهینه سازی فوق تابع هزینه را بصورت زیر می نویسیم:
(اسکالر q بیانگر میزان فازی بودن است)با مشتق جزئی گرفتن نسبت به rs u و برابر صفر قرار دادن مشتق rs u را بصورت زیر بدست می آوریم:
فاصله d را می توان بصورت ساده فاصله اقلیدسی و یا فا صله با هاتاچار و یا فاصل ماهالاتوبیس تعریف کرد که ما برای سادگی از فاصله اقلیدسی استفاده می کنیم.با مشتق گیری نسبت به j و برابر صفر قرار دادن داریم:
با فرض اینکه فاصله ( را بصورت زیر تعریف کنیم :
الگوریتم فوق را بصورت زیر می توان پیاده سازی کرد:Choose j(0) as initial estimate for j , j= 1 , … , m T= oRepeat – for I = 1 to N*for j = 1 to m
End { for j } End { for i}-t= t+ 1For J = 1 to m Parameter Updating :
-End { for j } Until a termination criterion is met. معیار پایان یافتن عملیات را هم می توان بصورت تغییرات جزئی در (u) j تعریف کرد یعنی در صورتی که داشته باشیم:
عملیات پایان می بابد.1- مشکلات روش FCM بیان شده در بالا عبارت هستند از: 1- تابع هزین ما هیچ گونه رابطه ای بین ورودیهای xi در نظر نمی گیرد.2- معیار کلاس بندی ما میزان فاصله ( می باشد که باعث افزایش حساسیت نسبت به نویز می شود . یعنی وجود نویز باعث برهم خوردن شدت نوز پیکسل ها و همچنین خطا در دسته بندی می شود.الگوریتم FCM توسعه یافته: الگوریتم بیان شده در این قسمت در پی حل مشکلات بیان شده در قسمت قبل می باشد. در روش FCM میزان ( در واقع تفاوت شدت نور پیکسل xi با مرکز کلاستر j ام می باشد، در روش جدید ما از علاقه مندی جذب همسایگان خود را به کلاستر خود جذب کند این میزان جذب به دو عامل بستگی دارد، یکی میزان شدت نور و پیکسل و دومی مکان قرارگیری همسایه های آن، در نتیجه تابع فاصله را بصورت اصلاح شد زیر تعریف می کنیم:
در رابطه بالا Hij میزان شباهت ویژگی و Fij شباهت مکانی را نشان می دهند.
ادامه خواندن مقاله تصاوير در مهندسي پزشکي
نوشته مقاله تصاوير در مهندسي پزشکي اولین بار در دانلود رایگان پدیدار شد.