nx دارای 75 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است
فایل ورد nx کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.
این پروژه توسط مرکز nx2 آماده و تنظیم شده است
توجه : در صورت مشاهده بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي nx،به هيچ وجه بهم ريختگي وجود ندارد
بخشی از متن nx :
بررسی کاربرد نانوتکنولوژی در صنایع خودروسازی
عنوان صفحهچکیده : 5مقدمه : 5فناوری نانو؛ الزامی برای شركت های خودروسازی 6نقاط كلیدی این گزارش 7عوامل اصلی رقابت در صنعت خودرو 7از عوامل کلیدی در صنعت خودرو میتوان به موارد زیر اشاره کرد: 9کاربردهای آتی در صنعت خودرو 9
بازارهای بخشهای فناوری نانو در صنعت خودرو مطابق تحقیقات انجام شده، بصورت ذیل میباشد: 10تولید و ذخیره انرژی 10مواد نانوساختار – نانوکامپوزیت – نانوذرات 11حسگرها و نمایشگرهای دقیق 11نانوالکترونیک 12
مواد و پوششها 12کاربردهای زیستی 12تولید 13محیط زیست 13ابزارهای نانو و فناوریهای متقارب در صنعت خودرو 13نانو کامپوزیت ها در صنعت خودرو 14کاربرد نانولوله های کربنی در خودرو سازی : 17ویژگیهای نانولولههای کربنی 17نانولوله های کربنی؛ خواص و کاربرد 201 – آلوتروپ های کربن 202 – نانولوله های کربنی 211 – 2 ساختار نانولوله های کربنی 212 – 2 خواص و کاربردهای نانولوله های کربنی 22به عنوان تقویت کننده در کامپوزیت ها 22استفاده در نمایشگرهای تشعشع میدانی 23استفاده از نانولوله های تک دیواره در صنعت الکترونیک 23ساختار تو خالی نانولوله و کاربرد به عنوان ذخیره کننده و پیل سوختی 24ساخت نانوماشین ها با استفاده از نانولوله های کربنی 25روش های تولید نانو لوله های کربنی : 253-2 روش تابش لیزر 263-2 رسوب بخار شیمیایی (CVD) 26
چالش های فرآوری : 275-1) تولید انبوه با قیمت مناسب 275-2) خالصسازی نانولولهها 275-3) اتصال نانولولهها و ایجاد رشتهها 285-4) جلوگیری از تودهای شدن نانولولهها 295-5) چگونگی حفظ نانولولهها بعد از فراوری 295-6) كنترل رشد نانولولهها 30رشد آرام؛ 31سنتز كاتالیزوری در دمای پایین؛ 31نانو تكنولوژی در بدنه اتومبیل 32در ادامه به معرفی كوتاهی از نمونه های كاربرد فناوری نانو در صنعت خودرو می پردازیم: 33• نانوكامپوزیت ها 33نانوکامپوزیت : 33تست مکانیکی : 35روش انجام آزمایش : 36
پودرهای به کار برده شده شامل: 36یکپارچه سازی با SPS : 37بحث ونتایج : 38• اثر نیلوفری و كاربرد آن در ساخت سطوح خود تمیز شونده 40• شیشه های نوین با توانایی بازتاب پرتو فروسرخ 41مبدل های كاتالیستی 42جمع بندی 74منابع و ماخذ : 75
منابع فارسی 75منابع لاتین : 75
چکیده :در این پژوهش به بررسی نقش و تاثیر تکنولوژی نانو در صنایع خودروسازی پرداخته شده است ، NanoCar، مطالعه ای جهانی در مورد تغییرات صنعت خودرو است كه همزمان با توسعه فناوری نانو و همگرایی نانو در میان تولیدكنندگان خودرو در سال های 2004 تا 2015 صورت می گیرد. خودروی آینده، با پیشرفت های مقرون به صرفه ای در ارتباط خواهد بود كه مبتنی بر كوچك سازی، مواد سبك تر و مستحكم تر و سیستم های جدید انرژی بوده و در عین حال، خودرویی هوشمند خواهد شود.
مقدمه :فناوری نانو تا 20 سال آینده، همانند فناوری اطلاعات در 20 سال گذشته، فناوری توانمندساز خواهد بود. هر شركتی در دنیا به وسیله این فناوری و از طریق همگرایی فناوری های: نانو، زیستی، تشخیصی و اطلاعات، تغییر خواهد یافت. فناوری نانو، فناوری میان بخشی است و تمام فناوری ها و بازارهای شناخته شده كنونی را تغییر داده و یا از نو تعریف خواهد كرد. این فناوری، در كوتاه مدت باعث تغییر و كامل شدن علوم زیستی، داروسازی، روش های تشخیص، فناوری پزشكی، غذا، فناوری محیط زیست، آب، انرژی، الكترونیك، مهندسی مكانیك و; خواهد شد.
فناوری های میكرو و نانو، قبلاً تغییراتی در صنعت خودرو ایجاد كرده اند. در خودروها، میكروتراشه ها موتور را تنظیم می كنند، فناوری های جدید ترمز خودرو را كنترل می كنند. ابزارهای الكترونیكی، از احتراق تمیز موتور اطمینان حاصل می كنند. صنعت خودرو یكی از زمینه هایی است كه شروع به بهره گیری از مزایای نانوكامپوزیت ها در اجزا و سیستم های مختلف كرده است. این كاربردها، از مبدل های كاتالیزوری (برای تبدیل مؤثرتر محصولات جانبی احتراق به مواد بی خطر) گرفته، تا پلاستیك ها و روكش های سبك وزنی كه بهره سوخت و عمر خودرو را افزایش می دهند، شامل می شوند.
فناوری نانو؛ الزامی برای شركت های خودروسازی پیشرفت های فناوری نانو در صنعت خودرو، طوفان نوآوری بزرگ تری را پیش بینی می كنند. صنعت خودرو از طریق فناوری نانو، رشد بزرگ و قابلیت پیشرفت عظیمی را به دست خواهد آورد. طی 10 سال، طراحی و تولید خودروها، كامیون ها، اتوبوس ها و; با استفاده از فناوری نانو و فناوری های مشابه، تا 60 درصد تحت تأثیر قرار خواهند گرفت. توانایی دستكاری اتم ها و مولكول ها، ابعاد جدیدی از صنعت خودرو را پیش روی ما قرار خواهد داد. فناوری نانو الزامی حیاتی برای شركت های خودروسازی است. روندهای غالب علم و فناوری به سمت مقیاس نانو حركت می كنند. صنعت
خودرو از طریق دستیابی به موتورهای پیشرفته، استفاده از انرژی های نو، كاهش وزن ماشین، بهبود عملكرد مواد، افزایش میزان راحتی و انعطاف پذیری، افزایش بهره وری و; از این روند سود خواهد برد. تقریباً تمام قطعات خودرو را می توان به وسیله فناوری نانو، بهبود بخشید. فناوری نانو، موجب ایجاد فضایی بسیار زیاد برای نوآوری و همچنین بازارهایی عظیم برای صنعت خودرو خواهد
شد. قدرت رقابت در 10 سال آینده، به میزان توسعه كاربردهای فناوری نانو توسط خودروسازان در خودروهایشان بستگی دارد. فناوری نانو، ارتباط بسیار نزدیكی با دیگر فناوری های مقیاس مولكولی نظیر فناوری زیستی، فناوری عصبی و فناوری اطلاعات دارد. همگرایی آنها، كنترل دقیق ساخت مولكولی را موجب می شود. فناوری های همگرا، نه تنها صنعت را تغییر خواهند داد بلكه موجب
تغییر سبك زندگی و جامعه خواهند شد. اثرات آنها بر محیط زیست، انرژی، بازار كار و اقتصاد جامعه، باید پیشاپیش مورد بررسی دقیق قرار گیرد. امروزه تعداد كمی از صنایع خودروسازی عمده در مرحله تحقیق یا استفاده اولیه از فناوری نانو قرار دارند. تا سال 2010 تمام خودروسازان و بخش اعظمی از تولیدكنندگان قطعات، درگیر فناوری نانو خواهند شد. تا سال 2015، محصولات و خدمات مربوط به فناوری نانو تا حدود 10 درصد از سهم كل بازار خودرو را دراختیار خواهند داشت.
نقاط كلیدی این گزارش این مطالعه، مبتنی بر تحقیقات و تحلیل های صورت گرفته در زمینه علوم و كاربردهای فناوری نانو در سال 2004 و توسعه آن در سال های 2006، 2010 و 2015 برای خودروسازان اصلی دنیاست. حدود 70 كاربرد فناوری نانو در صنعت خودروسازی برای دهه آینده، مورد مطالعه قرار گرفته اند. این كاربردها در زمینه های مختلفی همچون: مواد، انرژی، نیروی محركه، ایمنی، اطلاع رسانی، تفریحات و محیط زیست است. حجم بازار مرتبط با این كاربردها در سال 2004، معادل 6/8 میلیارد دلار،
2010 معادل 2/54 میلیارد دلار و 2015 معادل 130 میلیارد دلار خواهد بود. این كاربردها، موجب می شوند تا خودروها سبك تر، قوی تر، سریع تر، ایمن تر، سازگارتر با محیط زیست و هوشمندتر شوند. در عین حال، فناوری نانو هزینه عملكردهای موجود را كاهش داده و در هر دو بعد تجهیزات و فرایندها، روش تولید را تغییر خواهد داد. فناوری نانو عنصر اصلی رقابت در صنعت خودرو در آینده خواهد بود. با این حال، كاربردها در 10 سال آینده تنها موجب ایجاد پیشرفت و ارزش افزوده خواهند شد. جنبه های انقلابی واقعی فناوری نانو در زمینه انرژی و تولید خواهد بود. به كارگیری انرژی
كاملاً پیشرفته و خدمات مربوط به آن، موجب تغییر حمل و نقل روزانه شده و تغییر بنیادی فرایندهای تولید، دنیا را عوض خواهد كرد. ظهور واقعی نانو كارخانه های شخصی، دنیای اقتصاد، بازار كار، جغرافیای سیاسی و نحوه زندگی بشر را از نو تعریف خواهد كرد. هدف شركت ها و محققان فناوری نانو، شكستن محدودیت های بنیادی فناوری های امروزی است.
عوامل اصلی رقابت در صنعت خودرو رقابت در صنعت خودرو همانند سایر بخش ها، از یك سو در زمینه تلاش برای كاهش هزینه و از دیگر سو، افزایش كارایی و غلبه بر مشكلات زیست محیطی است. عوامل اصلی رقابت در صنعت خودرو عبارتنداز: قیمت ، ایمنی و امنیت ، كارایی سوخت ،ارتباطات/ اطلاعات ،عملكرد بهتر ،كاهش آلودگی هوا ، زیبایی ،راحتی در تمامی این زمینه ها، فناوری نانو یا در حال استفاده توسط شركت های خودروسازی برای كسب قدرت رقابت بالاتر بوده و یا در آینده توسط این شركت ها به كار گرفته خواهد شد. بسیاری از كاربردهای پیشنهادی فناوری نانو، مشخصات نسل بعدی خودروها را تعیین خواهند كرد. به عنوان قدرتمندترین فناوری توانمندساز، استفاده از فناوری نانو موجب به دست گرفتن نقش رهبری در زمینه این فناوری خواهد شد.فناوری میكرو و نانو در حال تغییر دادن صنعت خودرو هستند. تولیدكنندگان خودرو نیز مشتاق استفاده از نوآوری ها برای بهبود عملكرد، راحتی و ایمنی خودرواند. عامل تصمیم گیرنده برای
پذیرش این فناوری ها مقرون به صرفه بودن آنهاست. بنابراین در سال های بعدی، پیشرفت های اصلی فناوری نانو در زمینه های زیر خواهد بود: – عملكرد بهتر: مربوط به كارایی موتورهای بهبود یافته و استفاده از مواد سبك و مستحكم كه همگی آنها به وسیله فناوری نانو تحت تأثیر قرار خواهند گرفت. – عدم استفاده از روان كننده ها از طریق به كارگیری لایه های نازك بر روی بلبرینگ ها و قطعات تحت اصطكاك – فیلترهای الكتروستاتیك جدید
– استفاده از سوئیچ های توان بالا در دستگاه های احتراقی، این سوئیچ ها بر مبنای نشر زمینه در نوك های تیز عمل می كنند . – كاتالیزورهای جدیدی كه از مواد بسیار متخلخل و سطوح انتخابگر شیمیایی بهره می برند . – نانوذرات در افزودنی های رنگ ها به كار رفته و اثرات رنگی جدید، سختی بیشتر و دوام بالاتر را موجب می شوند – كاربردهای میان مدت، شامل قطعات موتور ساخته شده از سرامیك های جدید، پلاستیك های با استحكام بالا و عایق های لرزشی بهتر مبتنی بر نانوسیالات مغناطیسی است – كاربردهای بلندمدت، شامل سیستم یاری رسان رانندگی مبتنی بر واقعیت تكمیل شده اند. صفر بازیابی كامل، خودروهایی كه با انرژی تجدیدپذیر كار می كنند و تولید شخصی می باشدامروزه فناوری نانو در بخشهای مختلفی از صنعت خودروسازی وارد شده است که غفلت از آن باعث عقبماندگی کشور در صنعت خودروسازی میگردد. این فناوری عامل بسیار مهمی در تولید خودروهای کم مصرفتر و مرغوبتر خواهد بود.پس بجاست که مدیران صنعت خودروسازی کشور تلاش مجدانهای در جهت دستیابی و توسعه این فناوری در صنعت خودروسازی کشور نمایند و با تلاش دو چندان در پی تجاری سازی آن باشند. صنایع خودروسازی در کنار صنایع دیگر از یک سو نگرشی به کاهش هزینهها دارد و از سوی دیگر در پی تلاش برای استفاده از فناوریهای نوین درکنار ملاحظات زیستمحیطی می باشد.
از عوامل کلیدی در صنعت خودرو میتوان به موارد زیر اشاره کرد: 1 کاهش آلایندگی و مصرف سوخت 2 بازیافت 3 ایمنی 4 بهبود عملکرد و ا فزایش کارایی موتور 5 زیبایی گرایی
کاربردهای آتی در صنعت خودروفروش بیش از 55 میلیون خودرو در سرتاسر جهان در سال 2002 صنعت خودرو را به یک بازار اقتصادی بزرگ و صنعت بسیار جذاب تبدیل کرده است. از این فناوری بیشتر برای بهبود استحکام، کاهش وزن، تولید مواد با سختی بالا (نانوکامپوزیتها)، استفاده بیشتر از انرژی (پیلهای سوختی) و نانوکاتالیستهای جدید (کنترل آلایندگی) استفاده میشود.تولید کنندگان خودرو به دنبال راههای استفاده از فناوری نانو به عنوان ابزاری برای کاهش هزینهها و بهبود عملکرد اجزاء خودرو در کنار راحتی و ایمنی هستند.
در همین رابطه یک شرکت بزرگ که در سالهای 1989، 1990 و 1995 تجربیات موفقی در مطالعه روی فناوری میکروسیستمها، میکروالکترونیک، صنایع خودرو و صنایع هواپیمائی داشته، در ادامه مطالعات خود به کمک 70 خودروساز معتبر دنیا از جمله مرسدس بنز، BMW ، فراری، ولوو، پورشه، پژو، جنرال موتورز، فورد و ; آمده و مطالعاتی را روی فناوری نانو و فناوریهای مرتبط با آن جهت استفاده در این صنایع انجام داده است.هدف از انجام این مطالعات، بررسی بازار سراسری کارخانهها، ارگانها، شاخهها، محصولات و تحقق و توسعه آنهاست. مطالعات نشان دهنده حجم معاملات و برگشت پذیری آن در زمینههای تولید زنجیره ارزش کارخانجات و موفقیت آنها در کنار استراتژی فرصتها و ریسکپذیری آنها برای سالهای آینده میباشد. همچنین در این مطالعات، به شکل جداگانه، بازار این گونه محصولات در کشورهای آمریکا، ژاپن، آلمان، چین و دیگر کشورهای اروپایی و آسیایی مورد بررسی قرار گرفته است
.
بازارهای بخشهای فناوری نانو در صنعت خودرو مطابق تحقیقات انجام شده، بصورت ذیل میباشد: تولید و ذخیره انرژی • پیلهای سوختی • پیلهای خورشیدی • کاتالیزورهای گازوئیلی و بنزینی
• ذخیرهسازی انرژی
مواد نانوساختار – نانوکامپوزیت – نانوذرات • نانوساختارهای سبک وزن • مواد مقاوم در برابر آتش و حرارت • افزایش استحکام و بهبود پایداری • رنگها و پوششهای نانوساختار و هوشمند • خود تمیز شوندهها • مقاومت به خراش
• عملکرد نوری پوششها • مواد قابل برنامهریزی
حسگرها و نمایشگرهای دقیق • نمایشگرهای حرکت • نمایشگرهای فشار • نمایشگرهای شیب
• سیستمهای بیومتریک • حسگرهای جوینانوالکترونیک • مدیریت هوشمند موتور • سیستم روشنایی • الکترونیک در دمای بالا • کنترل امنیت • باطریهای با طول عمر طولانی
مواد و پوششها • پوششهای نانوکامپوزیتی با اصطکاک پائین • پوششهای نانوکامپوزیتی مقاوم به سایش • پوششهای مقاوم به حرارت
کاربردهای زیستی • تجهیزات بهداشتی • سیستمهای امداد • طراحی زیستی
تولید • اندازهگیری و کنترل • اداوات، ابزار و ماشینها • اتوماسیون
محیط زیست • فناوری زیست محیطی • بازیافت • سوخت
ابزارهای نانو و فناوریهای متقارب در صنعت خودرو • فناوری بر اساس نانولولههای کربنی
• مدل سازی و شبیهسازی • نانوحسگرها و محرکها • اسپینترونیک و نانومغناطیس
نانو کامپوزیت ها در صنعت خودرو اثبات شده است که در دنیای نانو مواد تفکر قدیمی ” هرچه بزرگ تر، بهتر” صدق نمی کند. به نظر می رسد آینده ما با درک و گسترش مواد کامپوزیتی که در ساخت آنها کوچکترین ذرات شناخته شده به کار کرفته می شوند، گره خورده است. با یک جستجو در شبکه جهانی اینترنت، مشخص می شود که چقدر کار در این زمینه انجام می شود. از زمان کشف تراشه سیلیکونی تاکنون، هیچ زمینه ای در علم مواد و فیزیک به این اندازه هیجان انگیز نبوده است. صنایع گوناگون خصوصی و
دولتی با میلیاردها دلار سرمایه گذاری به سوی بهره برداری از این دنیای کوچک هجوم آورده اند. دنیایی که در آن مواد با اندازه ای کوچک تر از 100 نانومتر تعریف می شوند. برای درک بیشتر، لازم به ذکر است که هر نانومتر تنها یک میلیاردم متر است. این اندازه ها یعنی این که مواد مورد مطالعه به اندازه یک ویروسند.
برنامه های دولتی به طور گسترده ای مطرح شده اند. حتی نخست وزیر تایلند نیز به تازگی اعلام کرده است که نانو مواد، اساس توسعه اقتصادی آینده این کشور را تشکیل خواهد داد و برای رسیدن به این هدف، 200 دانشمند به کار گرفته شده اند. دولت فدرال ایالات متحده نیز در پروژه 4/1 میلیارد دلاری خود در وزارت انرژی، یک مرکز تحقیقات علوم نانو گنجانده است که حدود 3800 نفر کارمند دارد و 3000 نفر مشاور پژوهشی با آن همکاری می کنند. توجه صنعت خودرو به این تحول بزرک جلب شده و در حال کشف کاربردهای جدیدی برای مواد نانو کامپوزیت است. تامین
کنندگان Tier و OEMS با کمک پژوهشی چندین موسسه آموزشی همانند دانشگاه ایالتی میشیگان و دانشگاه سینسیناتی در حال کشف جایگاه رقابتی مناسب برای خود هستند. بازه کاربردی این مواد از پلیمرهای سانای الکتریسیته تا میکروسوئیچ های نوری و حس گرها و سوییچ های هوشمند در اندازه های نانو متغیر است.
در این چند سال گذشته پلیمرهای رسانا تدریجاً کاربردهایی در صنعت خودرو پیدا کرده اند. با به کارگیری نانو لوله های کربنی با نسبت طول به قطر 1000 به 1 و مقاومت حجمی حدود 6 10̄ اهم – سانتی متر، بهترین ماده کامپوزیتی برای خطوط انتقال سوخت به دست خواهد آمد و باعث تغییر جنس این خطوط از فولادی به پلیمری می شود. شرکت های آمریکایی هایپریون (Hyperion ctalysis international)و اپلایدساینس (Applied Science Inc) عقیذه دارند که بازار تجاری نانو لوله های کربنی چند دیواره (MWNT) به چندین تن در سال می رسد. پلیمرهای رسانا در ساخت صفحات بیرونی بدنه خودرو نیز به کار می روند. این صفحات می توانند بدون هیچ تغییری در خط رنگ پاشی الکترواستاتیک قطعات فولادی رنگ شوند. چون دستگاههای رنگ پاشی در سرمایه گذاری یک کارخانه جدید بخش عمده ای را به خود اختصاص می دهند. لزوم فراهم کردن یک خط رنگ پاشی جداگانه در کارخانه، صفحات پلیمری را جایگزین نامناسب و غیر قابل قبول برای فولاد معرفی می کند. GE و کابوت (cabot) شرکت هایی هستند که به تازگی گونه هایی از پلیمرهای رسانا را عرصه کرده اند.
در یک کارگاه آموزشی که به تازگی توسط مرکز تحقیقات علوم نانو وزارت انرژی آمریکا برگزار شد. ریچارد اسمالی (Richard Smalley)، یک پژوهش گر در زمینه نانو، 14 پدیده از فن آوری نانو را معرفی کرد که هر کدام به عنوان تحولی بزرگ در 10 سال آینده، رخ خواهد داد. در بالای این فهرست کاربردهایی همانند ذخیره سازی هیدروژن، پیل های سوختی و باتری ها / ابر خازن ها قرار داشتند. تمام این وسایل از نظر وسایل تولید ذخیره نیرو. اثر مهمی بر صنعت خودرو خواهند داشت. تخمین زده می شود تنها پیل های سوختی،هزینه زیرساخت های صنعت خودرو را به یک دهم تا یک صدم کاهش دهند. دیگر فن آوری نیز اثری تقریباً مشابه دارند.
جنرال موتورز از سال 2002 کامپوزیت های نانورس و نانوتالک را به طور موفقیت آمیزی در اجزای سازه ای رکاب خودروهای آسترو (Astro) و سافاری (Safari) به کار گرفته است و برای ساخت در پشتی بیوک راندوو (Buick Rendevous) نیز یک ماده TPO نانو کامپوزیت را به خواهد گرفت. شرکت تویوتا با عرضه قطعه ای از جنس نایلون نانورس در سال 1991، نخستین نانو کامپوزیت تجاری را به صنعت خودرو معرفی کرد. اکنون باید زبان جدیدی برای تشریح طراحی و ساخت این محصولات جدید به کار گرفته شود. زبانی که حاوی عباراتی همچون جا داده شده (intercalated) و ورقه ورقه (exfoliated) باشد. بررسی فهرست خرید مواد جدید همانند مطالعه فرهنگ لغاتی است که در آن، مدخل نانو دارای زیر مجموعه های بسیاری از جمله نانو لوله ها، نانورس ها، نانو الیاف، فیبریل ها، نانو پلاکت ها(پولک های نازک با ضخامت کمتر از 5 نانومتر)،نانوسیم ها، نانوکامپوزیت ها، نانو رشته ها، نانو ذرات و نانوابزار است. نانو پلاکت های نوری، انقلابی در سیستم های سویچینگ و حس گر
تجهیزات الکتریکی خودروها ایجاد خواهند کرد. در این تجهیزات که به زودی به سیستم های 36 تا 48 ولت تغییر خواهند کرد، تسهیم (multiplexing) یک نیاز است (تسهیم بکارگیری همزمان یا مشترک مدارهای الکتریکی برای برقراری ارتباط های چند گانه است). افق آینده این مواد حس گرهای کیسه هواست که در پوسته پلیمری بیرونی آن قرار داده می شوند و سیگنال ها را با سرعت نور، منتقل می کنند. به این ترتیب میلی ثانیه هایی به دست می آیند که در میزان آسیب وارده در اثر تصادف بسیار تاثیرگذارند.
ویژگی های دیرسوز کنندگی نانو کامپوزیت ها، امیدهایی را برای خلق یک رده کاملاً جدید از پلیمرها با کاربری درون خودرو ایجاد می کنند. مقاومت کامپوزیت های تقویت شده با نانو پلاکت ها در برابر شرایط آب و هوایی، عمر مفید قطعات بیرونی را افزایش می دهد. صفحات دو قطبی که از نانو کربن استفاده می کنند. فن آوری پیشرفته ای برای تولید انبوه پیل های سوختی ارایه می کنند. نانو سرامیک ها نیز فرصتی برای تجدید نظر در ساختار داخلی موتورهای درون سوز و پوشش اجزای این موتورها ایجاد می کنند. نانو کامپوزیت های سبز، بر پایه شیمی کربوهیدرات ها، تعریف جدیدی از بازیافت پذیری و تجزیه زیستی ارایه می کنند. جهان نانو ممکن است کوچک باشد ولی بزرگ ترین تحول مواد در دو دهه آینده است، ممکن است پس از این در همایش های تخصصی، برای مشاهده شگفتی های دنیای نانو حتی به یک میکروسکوپ الکترونیکی TEM نیاز باشد. توان بالقوه حقیقی این مواد در آینده ای نزدیک درک خواهد شد.
کاربرد نانولوله های کربنی در خودرو سازی :نانولولههای کربنی که از صفحات کربن به ضخامت یک اتم و به شکل استوانهای توخالی ساخته شدهاست در سال 1991 توسط سامیو ایجیما (از شرکت NEC ژاپن) کشف شد. خواص ویژه و منحصر به فرد آن از جمله مدول یانگ بالا و استحکام کششی خوب از یک طرف و طبیعت کربنی بودن نانولولهها (به خاطر این که کربن مادهای است کم وزن، بسیار پایدار و ساده جهت انجام فرایندها که نسبت به فلزات برای تولید ارزانتر میباشد) باعث شده که در دهه گذشته شاهد تحقیقات مهمی در کارایی و پرباری روشهای رشد نانولولهها باشد.
کارهای نظری و عملی زیادی نیز بر روی ساختار اتمی و ساختارهای الکترونی نانولوله متمرکز شدهاست. کوششهای گستردهای نیز برای رسیدگی به خواص مکانیکی شامل مدول یانگ و استحکام کششی و ساز وکار عیوب و اثر تغییر شکل نانولولهها بر خواص الکتریکی صورت گرفتهاست. میتوان گفت این علاقه ویژه به نانولولهها از ساختار و ویژگیهای بینظیر آنها سرچشمه میگیرد.
ویژگیهای نانولولههای کربنیانواع نانولوله های کربنی
روشهای تولید نانو لولههای کربنیکاربردهای نانولولههای کربنیچالشهای فراورینانو لوله های کربنی، به دلیل خواص مکانیکی، گرمایی، شیمیایی، نوری و الکتریکی شان، نوید بسیاری کاربردهای با فن آوری های بالا را می دهند.به گزارش خبرگزاری برق، الکترونیک و کامپیوتر ایران (الکترونیوز) و به نقل از ساینس دیلی، پژوهشگران دانشگاه نورس وسترن امریکا از نانو لوله های فلزی برای ساختن لایه های نازکی که از لحاظ ظاهری شبیه شیشه های رنگی هستند و ویژگی هایی همچون نیمه شفاف بودن، رسانایی و انعطاف پذیری بالا دارند و در انواع و اقسام رنگ ها موجود می باشند، استفاده کرده اند. این نتایج، که به صورت آنلاین در ژورنال نانولترز منتشر شده، می تواند به تولید محصولاتی با فن آوری های پیشرفته مانند صفحه نمایشگرهای مسطح و یا سلول های خورشیدی، منجر شود.خواص متنوع و بسیار خوب نانو لوله های کربنی، کاربردهای وسیعی را ایجاد کرده است. این کاربردها شامل ترانزیستورها، گیت های منطقی، اتصالات، لایه های رسانا، منابع گسیل میدان، گسیل کننده های مادون قرمز، بیوسنسورها، دستگاه های نانو مکانیکی، نیروهای تقویتی مکانیکی، عناصر ذخیره ی هیدروژن و پایه های کاتالیزی می باشند.اخیراً در میان کاربردهای مذکور، لایه های رسانای شفاف که با استفاده از نانو لوله های کربنی ساخته می شوند، مورد توجه زیادی قرار گرفته اند. رساناهای شفاف، موادی هستند که از نظر نوری شفاف و از نظر الکتریکی رسانا می باشند. این مواد معمولاً به عنوان الکترودهایی در صفحه نمایشگرهای مسطح، صفحه نمایش های لمسی، روشنایی حالت جامد و سلول های خورشیدی مورد استفاده قرار می گیرند. با افزایش تقاضا برای منابع دیگر انرژی و ساخت دستگاه هایی که از نظر انرژی بازده خوبی دارند، تقاضای جهانی برای لایه های رسانای شفاف نیز به سرعت در حال افزایش است.
در حال حاضر، مهم ترین ماده ی مورد استفاده برای کاربردهای رسانای شفاف، اکسید قلع ایندیم می باشد. کمیابی نسبی ایندیم از یک طرف و افزایش تقاضا از طرفی دیگر منجر به افزایش شدید هزینه ی ساخت این گونه لایه ها در پنج سال گذشته شده است. علاوه بر این موضوع اقتصادی، اکسید قلع ایندیم دارای قابلیت تنظیم نوری محدود و انعطاف پذیری مکانیکی ضعیفی می باشد. بنابراین استفاده از این ماده در کاربردهایی نظیر LED های آلی و دستگاه های فتوولتاییک آلی به خطر می افتد.
تیم نورس وسترن گام مهمی در معرفی یک رسانای شفاف دیگر برداشته است. پژوهشگران با استفاده از روشی موسوم به نیروی گریز از مرکز افت چگالی، نانو لوله های کربنی با خواص الکتریکی و نوری یکسانی تولید کرده اند. رسانایی لایه ها ی نازکی که از این نانو لوله های با خلوص بالا ساخته شده اند، ده برابر مواد نانو لوله های قبلی می باشد.روش نیروی گریز از مرکز افت چگالی، نانو لوله های کربنی را بر اساس خواص نوری آنها تقسیم بندی می کند و ساختار لایه های رسانای نیمه شفاف با رنگ مشخصی را به وجود می آورد. لایه های ایجادشده ظاهری شبیه به شیشه های رنگی دارد. هرچند، بر خلاف شیشه های رنگی، این لایه های نازک نانو لوله های کربنی رسانایی الکتریکی بالا و انعطاف پذیری مکانیکی خوبی دارند. خاصیت انعطاف پذیری مکانیکی خوب این نانو لوله ها، یکی از مهم ترین محدودیت های اکسید قلع ایندیم در کاربردهای فتو ولتاییک و الکترونیک انعطاف پذیر را بر طرف می کند.مارک هرسام، سرپرست تیم پژوهشی، استاد مهندسی و علم مواد در دانشگاه نورس وسترن، دانشکده ی مهندسی و علوم کاربردی و همچنین استاد شیمی در کالج علوم و هنر واینبرگ گفت: “رساناهای شفاف در جامعه ی امروزی همه جا حضور دارند. از مانیتور کامپیوترها گرفته تا صفحه نمایش تلفن های همراه و تلویزیون های دارای صفحه نمایش تخت. لایه های نازک نانو لوله های کربنی که خلوص بالایی دارند، نه تنها موجب پیشرفت هایی در زمینه ی کاربردهای رایج می شود، بلکه موجب پیشرفت فن آوری های مریی مانند LED های آلی و دستگاه های فتوولتاییک آلی نیز می شود. انتظار می رود در آینده ی قابل پیش بینی، فن آوری های مربوط به بازده انرژی و منابع انرژی ثانویه از اهمیت در حال افزایشی برخوردار باشند.”
علاوه بر هرسام، الکساندر گرین نویسنده ی دیگر مقاله شان در ژورنال نانولترز می باشد. وی فارغ التحصیل مهندسی و علم مواد دانشگاه نورس وسترن می باشد.
نانولوله های کربنی؛ خواص و کاربرد
1 – آلوتروپ های کربن تا سال 1980، سه آلوتروپ کربن(کربن غیر بلوری) به نام های الماس، گرافیت و کربن بی شکل شناخته شده بودند، اما امروزه می دانیم که خانواده کاملی از سایر اشکال کربن نیز وجود دارند (شکل 1).
شکل1 آلوتروپهای مختلف کربناولین آلوتروپ کربن که در سال 1985 کشف شد، باک مینستر فولرن نام داشت که به نام های دیگر باکی بال و فولرن نیز نامگذاری شده است. فولرن ها مولکول های کروی کربن هستند که به سبب شکل زیبا و خواص شگفت انگیز، توجه بسیاری از دانشمندان را به خود معطوف کرده اند. آلوتروپ بعدی کربن که در سال 1991 کشف شد، نانولوله(Nano Tube) نام دارد که در این مقاله به آن پرداخته خواهد شد.
2 – نانولوله های کربنی 1 – 2 ساختار نانولوله های کربنی در سال 1991 دانشمندی به نام سومیو ایجیما به طور کاملاً اتفاقی، ساختار دیگری از کربن را کشف و تولید کرد که خواص منحصر به فردی دارد. وی در ابتدا این ساختار را نوعی فولرن تصور نمود که در یک جهت کشیده شده است. اما بعدها متوجه شد که این
ساختار، خواص متفاوتی از فولرن ها دارد و به همین دلیل آن را، نانولوله ی کربنی نامید. در یک نانولوله ی کربنی، اتم های کربن در ساختاری استوانه ای آرایش یافته اند. یعنی یک لوله ی توخالی که جنس دیواره اش از اتم های کربن است. آرایش اتم های کربن در دیواره ی این ساختار استوانه ای، دقیقاً مشابه آرایش کربن در صفحات گرافیت است. در گرافیت، شش ضلعی های منظم کربنی در کنار یکدیگر صفحات گرافیت را می سازند. این صفحات کربنی بر روی یکدیگر انباشته می شوند و هر لایه از طریق پیوندهای ضعیف واندوالس به لایه زیرین متصل می شود. هنگامی که صفحات گرافیت در هم پیچیده می شوند، نانولوله های کربنی را تشکیل می دهند. در واقع، نانولوله ی کربنی، گرافیتی است که به شکل لوله در آمده باشد (شکل 2).
شکل2 شکل گیری نانولوله ها از صفحات گرافیتنانولوله های کربنی به دو دسته کلی نانولوله های کربنی تک دیواره و نانولوله های کربنی چند دیواره تقسیم می شوند. چنانچه نانولوله کربنی فقط شامل یک لوله از گرافیت باشد، نانولوله تک دیواره و اگر شامل تعدادی از لوله های متحد المرکز باشد نانولوله چند دیواره نامیده می شود (شکل 3).
شکل3 انواع مختلف نانولوله های کربنی
2 – 2 خواص و کاربردهای نانولوله های کربنی کشف نانوله های چند دیواره در سال 1991، موجب شده است که فعالیت های تحقیقاتی گسترده ای در علوم به بحث نانو ساختارهای کربنی و کاربردهای آنها اختصاص یابد. دلیل عمده ی این مسئله تکامل ساختاری مورد انتظار آنها، اندازه کوچک، چگالی کم، سختی بالا، استحکام بالا (استحکام کششی خارجی ترین جداره ی یک نانولوله کربنی چند دیواره تقریبا ً 100 برابر بیشتر از
آلومینیوم است) و خواص عالی الکتریکی آنهاست. در نتیجه نانولوله های کربنی ممکن است به طور گسترده در تقویت مواد، صفحه نمایش مسطح با انتشار میدانی، حسگرهای شیمیایی، دارو رسانی و علم نانو الکترونیک کاربرد یابند. در ادامه به مواردی از کاربردهای نانولوله های کربنی اشاره خواهد شد.
به عنوان تقویت کننده در کامپوزیت ها نانولوله ها یکی از مستحکم ترین مواد به شمار می روند. این موضوع، کاربرد نانولوله های کربنی را به عنوان ماده ی پرکننده در تولید نانوکامپوزیت ها به خوبی روشن می سازد. کامپوزیت های با پایه نانولوله ی کربنی دارای نسبت استحکام به وزن بالا هستند و مصارف گسترده ای را در صنعت خواهند داشت.
استفاده در نمایشگرهای تشعشع میدانی یکی از مشکلات دستگاه های نشر میدان امروزی، عدم پایداری میدان های تولیدی در بازه های زمانی طولانی است. این مشکل را می توان با استفاده از نانولوله کربنی حل نمود. بیش از 700
مقاله تحقیقاتی در رابطه با کاربردهای نشر میدان نانولوله های کربنی منتشر شده است. این آمار بیانگر اهمیت موضوع است. برای مثال، مزایای استفاده از نمایشگرهای تولید شده با نانولوله ی کربنی نسبت به نمایشگرهای کریستال مایع، سرعت واکنش بالاتر نسبت به محرک های الکتریکی، مصرف انرژی کمتر، درخشندگی مناسب تر، میدان مغناطیسی پایین در هنگام روشن کردن دستگاه و دمای کاری بالاتر است.
بر پایه همین مزیت ها، شرکت هایی مانند سامسونگ و NEC نمایشگرهای رنگی با استفاده از نانولوله کربنی را تولید کرده است. تلویزیون های ساخته شده با این تکنولوژی در اوایل سال 2006 روانه بازار شد.
استفاده از نانولوله های تک دیواره در صنعت الکترونیک نانولوله ها به میزان قابل توجهی سخت و قوی بوده و هادی جریان الکتریسیته و گرما می باشند. این خواص سبب استفاده از این مواد در صنعت الکترونیک شده است. نانولوله های کربنی سیم های مولکولی بزرگی هستند که الکترون می تواند آزادانه در آن حرکت کند و رفتار آنها پیچیده است. در این راستا رفتار نانولوله های چند دیواره بسیار پیچیده تر از تک دیواره است زیرا لایه های کناری روی یکدیگر تأثیر می گذارند. مدل سازی چنین اثراتی از موضاعات تحقیقاتی در حال حاضر می باشد. محققان امیدوارند که ابعاد سیم ها یا قطعات را از طریق جایگزینی با نانولوله به حدود نانومتر یا کمتر برسانند. این قطعات در کنار مدارات الکترونیکی می توانند خیلی سریع تر و با توان کمتر از مدارات کنونی کار کنند. لامپ های تولید شده با نانولوله های کربنی هزینه تولید کمتری دارند. به علاوه عمر طولانی تر و ثبات رنگ بیشتر نسبت به لامپ های معمولی، از مزایای دیگر این لامپ هاست.
ساختار تو خالی نانولوله و کاربرد به عنوان ذخیره کننده و پیل سوختینانولوله ها، ساختارهای کربنی توخالی هستند. بنابراین، امکان قرار دادن مواد خارجی در داخل آنها وجود دارد.به طور مثال، با قرار دادن فلزات درون نانولوله ها می توان خواص الکتریکی این مواد را بهبود بخشید. تحقیقات نشان داده است که نانولوله های باز، مثل یک نی توخالی عمل می کنند. این نی های مولکولی می توانند به وسیله عمل موئینگی و تحت شرایط خاص، برخی عناصر را به درون خود بکشند. همچنین نانولوله های کربنی برای ذخیره نمودن سوخت های آلکانی و هیدروژن و ایجاد پیل های سوختی نیز مورد بررسی قرار گرفته اند. ذخیره ی هیدروژن در داخل نانولوله های کربنی تک دیواره امکان پذیر است. ظرفیت جذب هیدروژن نانولوله های تک دیواره ساخته شده حدود 3 تا 5 درصد وزنی نانولوله هاست. بنابراین در مقایسه با دیگر انواع ذخیره سازهای هیدروژن نظیر سیستم
هیدروژن مایع، هیدروژن فشرده، هیدریدهای فلزی و سوپرکربن اکتیو، سیستم نانولوله ای کربنی و خصوصاً نانولوله های تک دیواره، بهترین انتخاب برای اهداف مورد نظر بوده و می تواند به عنوان سیستمی سبک، فشرده، نسبتاً ارزان، ایمن و با قابلیت استفاده مجدد در ذخیره سازی هیدروژن مورد استفاده قرار گیرد.
ساخت نانوماشین ها با استفاده از نانولوله های کربنینانولوله های کربنی همچین برای استفاده در ساخت نانوماشین ها پیشنهاد شده اند. نانولوله ها به طور مناسبی با ساختارهای مختلف جانشین شده اند که می توانند به عنوان محورها در نانو ماشین ها عمل کنند. ممکن است، نانولوله های مختلف با همدیگر تشکیل چرخدنده دهند تا حرکت چرخشی مختلفی را انتقال دهند. این امر از طریق ساختن دنده های چرخدنده (استخلاف ها) بر روی نانولوله ها می تواند انجام شود.
روش های تولید نانو لوله های کربنی :بعد از آن كه در سال 1991 ایجیما اولین نانولوله را دركربن دودهای حاصل از تخلیه قوس الكتریكی مشاهده كرد، محققان زیادی در جهت بسط و گسترش روشهای رشد برآمدهاند تا بتوانند مواد خالصتر با خواص كنترل شده مورد نظر تولید كنند. اما با آن كه روشهای زیادی برای تولید نانولولههای كربنی ارائه شده است، سنتز آن ها در دمای اتاق تاكنون به صورت مشكلی لاینحل باقی مانده است. دانشمندان تاكنون این مواد را در محدوده دمایی 200 تا700 درجه سانتیگراد با بازده كمتر از 70 درصد و حتی پس از چندین بار خالصسازی با درجهخلوص حداكثر 95 -70 درصد تولید كردهاند. در زیر چند روش عمده در سنتز نانولولهها مورد بحث اجمالی قرار میگیرد. بدون شك بهینه سازی و كنترل این روشها میتواند توان بالقوهنانولولهها را پدیدار نماید.
3-1 روش تخلیه قوسدر این روش اتمهای كربن به وسیله عبور جریان بالا از دو قطب آندو كاتد در داخل پلاسمای گاز هلیم داغ شده و بخار میشوند.
3-2 روش تابش لیزردر این روش پالسهای قوی شده اشعه لیزر به طرف یك هدف كربنی كه شامل 5 درصد اتمی نیكل و كبالت است پرتاب میشوند.
3-2 رسوب بخار شیمیایی (CVD)
این روش شامل حرارت دادن مواد كاتالیزوری تا درجه حرارت های بالا در یك كوره لولهای شكل و عبور یك گاز هیدروكربنی در سراسر لوله برای یك مدت زمان معین میباشد.دو روش تخلیه قوس و تابش لیزر برای زمان طولانی، روشهای تقریباً كاملی برای تولید نانولولههای تك جداره بودند. اما از آنجایی كه هر دو روش مبتنی بر بخار اتمهای كربن درون محفظه كوچك هستند اولاً میزان تولید نانولوله پایین میباشد، ثانیاً نانولولههایی كه به صورت تبخیری تهیه میشوند به صورت در هم پیچیده هستند؛در این صورت برای خالص و تمیز كردن آن ها با مشكل مواجهاند. روش رسوب بخار نیز با چالشهایی مواجه است چرا كه برای تولید نانولولههای كربنی چند جداره چگالی بالایی از عیوب در ساختارشان به وجود میآید. این عیوب به خاطر دمای پایین
رشد میباشد كه مقدار انرژی لازم برای بازپخت (آنیل) نانولوله و تكمیل ساختارش را فراهم نمیكند. همچنین این روش منجر به مداری شامل هر نوع نانولولههای هادی و نیمههادی میشود. همچنین رشد نانولولهها دلخواه بوده و قطر آن ها بزرگ است در حالی كه نانولولههای با قطر كمتر در كلید زنی مناسبترند. با این وجود تمركز محققان بر روی روش رسوبدهی بخار است زیرا تولید انبوه در حد كیلوگرم را میسر میسازد و میتوان كنترل قابل قبولی بر مكانیزم رشد داشت.
چالش های فرآوری :با وجود ویژگیهای بالای نانولولهها و كاربردهای فراوان آن، تولید و استفاده مستمر از این محصولات با اهداف مورد نظر مشكل میباشد، لذا محققان زیادی در جهت رفع مشكلات آن برآمدهاند. در زیر چند مورد از مشكلات اساسی استفاده از نانولولهها ذكر میگردد.
5-1) تولید انبوه با قیمت مناسباز آنجا كه تولید انبوه نانولولهها در مقیاس تنی با قیمت مناسب، بزرگ ترین مانع تجاریسازی اختراعات در این زمینه بوده است، لذا شركتهای مختلفی درصددند تا بتوانند این مشكل را حل نمایند. امروزه قیمت هر گرم نانولوله چند دلار میباشد. هر چند كه قیمت نانولولهها نسبت به قیمت اولیه آن كاهش زیادی یافته اما هنوز هم برای تجاریسازی و استفاده در صنایع مختلف مناسب نمیباشد، لذا دانشمندان ابراز امیدواری كردهاند كه بتوانند در چند سال آینده ضمن تولید چند تنی آن، قیمت آن را به زیر یك دلار كاهش دهند.
5-2) خالصسازی نانولولهها یكی از مسائل كلیدی در الكترونیك، استفاده از نانولولههای كربنی با كیفیت بالا (نانولولههای خالص) میباشد. تولید محصولات جانبی نا مطلوب در حین فرایند رشد نانولولههاسبب كوتاه شدن مدارها میشود. بزرگ ترین چالش محققان، در خالصسازی، میزان نانولولههای تولید شده است. در فرایند استفاده شده توسط محققان برای ساخت نانولولهها، ناخالصیها دائماً افزایش یافته و مقدار زیادی از كربن به هدر رفته و كاتالیستها را بِلا استفاده می كند، كه این عوامل در نهایت منجر به افت كیفیت نانولولهها میشود.برای رسیدن به نانولولههای كربنی خالص باید از دمای بالا استفاده نماییم اما در این روش مقداری كربن آمورف حاصل میشود كه یك لایه رسانای نامطلوب بر روی زیرلایه ایجاد مینماید. لذا راهبرد
جدید، استفاده از روش رشد سریع میباشد. این روش رسوبدهی، تولید نانولولهكربنی حاصل را تضمین میكند زیرا رشد نانولولهها سریعتر از رشد محصولات جانبی نامطلوب است. بنابراین می توان گفت حذف فرایندهای هزینهبر، زمانبر و اغلب مخرب در تخلیص نانولولهها به معنی دسترسی به نمونههایی با درجهای از خلوص كربن است كه میتوانند در زمینههای مختلفی از جمله زیست شناسی، شیمی و تحقیقات مغناطیسی وادوات گسیل میدانی كه خلوص نانولولهها از اهمیت بسیار بالایی برخوردار میباشد به كار روند.
5-3) اتصال نانولولهها و ایجاد رشتههااز آنجا كه برای بسیاری از مقاصد، نیاز به اتصال نانولولهها به صورت پشت سر هم یا به صورت عمود بر هم و تشكیل آرایه می باشد لذا اتصال نانولولهها ضروری به نظر میرسد. به طوری كه اگر بتوان نانولولههای كربنی را به هم پیوند داد به موادی كامل و تمام عیار دست می یابیم. اما برای ایجاد این اتصالات بین لولهها باید پیوندهای كربنی بین لولهای ایجاد كرد.دو روش ایجاد رشتههایی از نانولولهها عبارتند از معلق ساختن نانولولهها در مایع و عبور جریان از آن به منظور ردیف ساختن نانولولهها و دوم استفاده از جریان گاز هیدروژن برای ردیف كردن نانولولهها به طوری كه آن ها به شكل بخاری از اتمهای كربن درآیند. دانشمندان معتقدند كه امروزه استفاده از آرایههای منظم نانولولههای مجزا جای استفاده تصادفی از نانولولههای متراكم و تودهای را گرفته است.
5-4) جلوگیری از تودهای شدن نانولولهها اگر نانولولهها به آسانی در محلول غوطهور شوند، به آسانی میتوانند قابلیت عظیم خود را در الكترونیك و مواد به نمایش گذارند، اما این استوانههای كربنی به شدت نامحلول بوده و تمایل به دسته شدن با همدیگر در رشتههای كروی كنترل ناپذیر دارند؛ لذا مانع از دستیابی به بسیاری از این كاربردها میشوند.دانشمندان روشهایی را برای جداسازی ارائه كرده اند، مثلاً با یك نیروی قوی (لولهها با امواج مافوق صوت در فرایندی موسوم به اختلاط صوتی از هم جدا میشوند) یا با استفاده از گروههای شیمیایی آلی بزرگ كه از چسبیدن نانولولهها به یكدیگر جلوگیری میكنند. همچنین با استفاده از مواد شیمیایی شویندههای غیرصابونی نیز توانسته اند نانولولهها را از هم جدا كنند.از دلایلی كه برای به هم چسبیدن این نانو لوله ها ارائه شده، وجود نیروهای واندروالس بین اتمهای كربن میباشد. نانولولهها به واسطه نیروی واندروالس كه نیروی جاذبه الكتروستاتیك
طبیعی بین اتمها و مولكولهای بدون بار است، از انتها به یكدیگر متصل میشوند، بارها مثبت و منفی اتمها و مولكولها كه با هم برابر اما از یك بخش به بخش دیگر تغییر میكنند، منجر به نیروی جاذبهای بین اتمها و مولكولهای مجاور میشوند. نیروی واندروالس تنها برای اشیاء بسیار كوچك نمود پیدا میكند؛ اما سئوال اساسی اینجاست كه آیا، اگر نانولوله هایی را كه به هم چسبیده اند جدا كنیم همواره جدا میمانند، یا بعد از مدت زمانی دوباره به هم میچسبند و این مدت چقدر است؟
5-5) چگونگی حفظ نانولولهها بعد از فراوری حفظ نانولولهها بعد از فراوری بسیار مشكل است. تا به حال محیط انتخابی، محلولهای متشكل از ماده پاك كننده وآب بوده است كه حاوی كمتر از 1 درصد حجمی نانولولههای پراكنده بوده و به وسیله محلولهای پلیمری فراوری شده اند؛ چنین غلظتهایی برای استفاده در فرایندهای صنعتی به منظور ساخت الیافهای نانولولهای بزرگ، بسیار پایین هستند. ضمناً دانشمندان هیچ راهی برای زدودن تمامی صابون و پلیمر و تبدیل نانولوله به شكل خالص پیدا نكردهاند. همچنین برای تولید مواد ماكرومقیاس از نانولولهها، در فرایندهای شیمیایی نیز باید از مایعی استفاده كرد كه بتواند محلولی با غلظت بالا از نانولولهها به وجود آورد. گروه پاسكوئالی در دانشگاه رایس معتقدند كه سوپر اسیدها (حاوی 10 درصد وزنی از نانولولههای خالص) میتوانند در تهیه الیافها و ورقههای نانولولهای ماكرومقیاس با استفاده از روشهای كاملاً مشابه با روشهایی كه در صنایع شیمیایی مورد استفاده قرار میگیرد به كار گرفته شوند.
5-6) كنترل رشد نانولولههاآن چیزی كه در كنترل رشد مورد اهمیت می باشد این است كه چگونه بتوانیم نانولولههایی با شكل و ویژگیهای دلخواه تولید كنیم. از آنجا كه نانولولهها هنگام تولید به صورت تك جداره یا چند جداره تشكیل میشوند و انتهای آن ها نیز بسته یا باز است، همچنین دارای طول و قطر یكنواخت
نمیباشند و تعدادی از نانولولهها رسانا و تعدادی غیررسانا هستند، لذا روشی برای كنترل دقیق نانولولهها و تولید یك نوع محصول خاص از آن وجود ندارد. روشهایی كه دانشمندان تا حالا ارائه كرده اند مربوط به جداسازی این مواد بعد از تولید (مثلاً روشهای جداسازی نانولولههای رسانا از نیمهرسانا یا روشهای بریدن نانولولهها و هم اندازه كردن آن ها) بوده است، لذا تولید یك نانولوله با خواص كنترل شده را به صورت یك رویا باقی گذاشتهاند.
عمدهترین كاوشها در كنترل رشد نانولولهها را می توان به صورت زیر خلاصه كرد: سنتز خوشههای كاتالیزوری مولكولی با شكل و ابعاد مشخص با دقت اتمی؛
رشد آرام؛سنتز كاتالیزوری در دمای پایین؛توسعه رشد برنامهریزی شده با امكان كنترل زیاد اندازه و جهت نانولولهها، سنتز پیچیده و سازماندهی شده شبكه با آرایههایی از نانولولهها روی مواد درشت مقیاس.بررسیهای نظری در كنار كارهای آزمایشگاهی مسیرهای نوینی را برای دیگر پژوهشگران به منظور ایجاد مواد و فناوریهای جدید با نانولولهها فراهم خواهد آورد لذا راهبردهای كاركردیسازی نانولولههای كربنی برای دسترسی به این كاربردها بسیار حیاتی است، به ویژه توسعه برای كاركردی سازی نانولولهها به صورت غیركوالان، به منظور استفاده از خواص الكترونیكی و مكانیكی آن ها، ضروری به نظر میرسد. لذا برای ساماندهی و دستكاری نانولولهها در مقیاس نانو، لازم است تمامی ابزارهای موجود جهت افزایش كارایی مواد و وسایل به كار گرفته شود. یكی از ابزار، شیمی تحلیلی، خصوصاً مدلسازی مولكولی و شبیهسازی است.
حال شبیهسازی چطور میتوانند برای نانوتكنولوژیستها مفید واقع شود؟ محدودیتهای آزمایشگر در مقیاس نانو زمانی آشكار میشود كه شگفتی جهان دانشمندان نظری وارد عمل شود. در اینجا هنگامی كه دانشمندان قصد قرار دادن هر یك از اتمها را در محل مورد نظر دارند قوانین كوانتوم وارد صحنه میشود. لذا برای تسریع در عمل تولید نانولولهها لازم است شیمیدانها نیز مانند تجربیكاران وارد عرصه شوند، چرا كه شیمیدانها میتوانند با انجام آزمایشها به وسیله رایانه، احتمال
فعالیتهای غیر موثر را از بین ببرند و گستره احتمالی موفقیتهای آزمایشگاهی را وسعت دهند، نتیجه نهایی این امركاهش اساسی در هزینههای آزمایشگاهی (مانند مواد، انرژی، تجهیزات) و زمان است
نانو تكنولوژی در بدنه اتومبیل«نانو تكنولوژی» امروزه به شدت فن آوری پوشش اجسام را تحت تأثیر قرار داده است. در این فناوری موادی در مقیاس نانو بر روی اجسام به صورت پوشش قرار می گیرید كه بسیاری از خواص منفی اجسام را خنثی می نماید. هدف اصلی این تكنولوژی كاهش آلودگی های زیست محیطی، جلوگیری از اتلاف انرژی و افزایش مقاومت در برابر خوردگی می باشد.یكی از انواع پوشش های نانوتكنولوژی (نانو ذرات طلا) می باشند. موارد استفاده این مواد اپتیك، الكترونیك، كاتالیست ها و نیز ماده رنگزا در صنعت رنگ می باشد. یكی از موارد مهم استفاده از این پوشش های نانو تكنولوژی در صنعت «خودرو سازی» می باشد.با پوشش دادن بدنه اتومبیل بوسیله نانو ذرات طلا می توان براقیت بدنه اتومبیل را دوام بخشید. این خاصیت كه (effect Color-flop) نام دارد، باعث می شود تا ناحیه روشن به دلیل بازتاب نور از ذرات آلومینیوم، قرمز روشن دیده شود و چون در ناحیه سایه تقریبا بازتاب نداریم به همین دلیل تیره رنگ به نظر می رسد. با كمك این فناوری در نانو تكنولوژی، نواحی زاویه دار بدنه اتومبیل مدور به نظر می رسند. ضخامت این تركیب نانو حدود 10 تا 30 نانومتر است. این ماده خمیری شكل است و از دولایه تشكیل شده است. لایه اول شامل ذرات برگچه ای شكل آلومینیوم كه به عنوان آستری بر روی فلز به كار برده می شود. لایه دوم كه همان نانو ذرات طلا هستند كه بر روی آستری اعمال می شود.
با نانو تكنولوژی بدون آنكه جنس بدنه اتومبیل و قالب های آن را تغییر دهیم، تنها با Nanolaminate (پوشاندن سطح اتومبیل با مواد نانو ذرات طلا) با هزینه ای بسیار اندك جلوه، زیبایی و دوام رنگ اتومبیل را افزایش می دهیم.
در ادامه به معرفی كوتاهی از نمونه های كاربرد فناوری نانو در صنعت خودرو می پردازیم: • نانوكامپوزیت هامواد كامپوزیتی مواد مهندسی ای هستند كه از دو یا چند جزء تشكیل شده اند به گونه ای كه این مواد مجزا و در مقیاس ماكروسكوپی قابل تشخیص هستند. كامپوزیت از دو قسمت اصلی ماتریكس(زمینه) و تقویت كننده(پركننده) تشكیل شده است. ماتریكس با احاطه كردن تقویت كننده آن را در محل نسبی خودش نگه می دارد و تقویت كننده موجب بهبود خواص مكانیكی ساختار میگردد.
یكی از گسترده ترین كاربردهای فناوری نانو در صنعت خودرو تا كنون ساخت نانو كامپوزیت ها بوده است. از آنجا كه در نانوكامپوزیت ها، ذرات بسیار ریز (نانوذرات)، استحكام و دوام رزین را بسیار بالا می برند، جایگزین مواد مرسوم مانند میكا و تالك شده اند. اما علاوه بر ویژگی های فیزیكی بهتر، این كامپوزیت ها دارای دو برتری دیگر نیز می باشند:
نخست اینكه نانوذرات با ایجاد ماتریكس (زمینه) یكنواخت و هموار به طور قابل توجهی زیبایی بیشتر را فراهم می كنند و بنابراین نانو كامپوزیت ها سطح زیبا تر و رنگ های شفاف تری دارند.همچنین نانوكامپوزیت ها به دلیل نیاز به مواد تقویت كننده ی كمتر، تا حدود بیست درصد نسبت به كامپوزیت های رایج سبك ترند.
نانوکامپوزیت :نانو کامپوزیت های پایه AL به وسیل SPS ساخته و یکپارچه شده اند . تأثیر Nb و SWCNT اضافه شده به آلومینای نانو کریستالیته به روش تست خمش موضعی آزمایش شد . افزودن 90% Nb به AL2O3 نانوکریستالیته یک شرط اساسی برای بهبود تا فنس شکست می باشد ( ) .
مشاهده شده که ترک های نشأت گرفته از ایندنتور ویکرز موجب خمش و شکست سطح نمونه شد . همچنین عملکرد فازهای داکتیل و سفت در کامپوزیت A2O3 -Nb 10% آشکار شد . همچنین اثر افزودن 5% SWCNT به AL2O3 -Nb 10% کامپوزیت مشخص شد که شامل یک ساختار با خلل و فرج کم تر و تأثیر کم بر سفتی شکست می باشد . مقاومت به نفوذ و سفتی شکست خمشی .اخیرا ً بحث در مورد چگونگی مکانیزم بهبود کیفیت کامپوزیت های AL2O3 به ویژه تا فنس شکست آنها مطرح است . البته خواص مکانیکی سرامیک های شکننده در تا فنس شکست . اگر چه واضح است که افزودن CNT موجب افزایش هدایت حرارتی و الکتریکی در مواد عایق می شود . اصولا ً CNT ها در ساختن AL2O3 در مرزدانه ها هنوز پیدا کرده و AL2O3 به عنوان ماتریس عمل می کن
د . اگر تا فنس شکست این کامپوزیت های ماتریس سرامیکی بهبود یابد می توان انتظار داشت که از آنها به عنوان نگه دارنده بزرگ در خودرو یاتاقان های کاربردی استفاده شود . این کامپوزیت ها دارای سختی بالاتر ، غیر فعال بودن شیمیایی بیشتر و چگالی کمتر نسبت به فلزات و آلیاژهای آنها هستند . همچنین CMC ها با قالب نانو کریستالینه دارای استحکام توام با سختی بیشتر نسبت به قالب میکرو کریستالینه هستند . در مقابل تا فنس شکست کمپوزیت های ماتریس نانوکریستالینه نسبت به میکروکریستالینه کم تر است . برای مثال کامپوزیت ها با ماتریس میکرو کریستالینه دارای تا فنس شکست حدود می باشد . در حالی این پارامتر برای کامپوزیت هایی با ماتریس نانو کریستالینه در حدود می باشد . افزودن داکتیل مانند فلزات به ماتریس سرامیکی در مکانیزم بهبود تا فنس مؤثر است .انرژی حاصل از اشاعه ترک های سراسری 2 پدید متفارت را ایجاد می کند : 1- کند شدن رشد ترک به وسیل فازهای داکتیل 2- انرژی حاصل از رشد سراسری را فازهای داکتیل جذب می کند . هر دو پدیده فوق فشار را در حوزه ی نوک ترک تشدید می کنند . افزودن این فیبرها (فازهای
داکتیل) به کامپوزیت های ماتریس سرامیکی تا فنس شکست را بهبود می بخشند به این طریق که آنها روی ترک ها به صورت پل عمل می کنند . افزایش تا فنس زمانی ممکن است که این فیبرها در برابر نیروی نوک ترک سالم باقی بمانند . این فیبرها در اثر خارج شدن از ماتریس دو طرف ماتریس را به هم متصل کرده و یا این فیبرها در اثر جذب کلی انرژی حاصل از ترک به طور مجزا می شکنند و انرژی را حذف می کنند . حالت دیگر تافنیتگ به این صورت است که این فیبرها موجب
انحراف ترک شده و و انرژی آن را حذف می کنند . این وضعیت در فیبرهایی مشاهده می شود که استحکام بیشتری نسبت به ماتریس داشته و برای ممانعت از انتشار ترک ها مانند محورهایی برای انحراف مسیر ترک با فشار بالا عمل می کنند . SPS میزان تراکم توسط SPS (98%)
تست مکانیکی :نمونه ها به میزان m 5/0 پولیش شانه و به اندازه mm 19×4×3 با اره الماسه بریده شده اند . نمونه طبق استاندارد 409 AST ms TP تهیه شد . در سطح نمونه سه نقطه را تست خمش انجام داده و با میکروسکوپ الکترونی نتایج را مشاهده کردند .سرعت انتشار ترک در مرحله نگه داری بار اولیه کمتر از 0/55 مشاهده شد و تا فنس شکست آن با فرمول زیر محاسبه می شود . ازمایش تا فنس شکست به روش درون گذاری (indentation) با ااستفاده از میکرو سختی سنج با فرورونه الماس و مایکرز و با فشار 228 Kn . به طور عادی ترک های منحرف شده اثر کمتری در تورق خودرو دارد . این نقش هدایتی باعث پخش نیروی شکست شده و سطح فضای هدایت را گسترش داد . به این ترتیب موجب تبدیل نیروی شکست در نوک ترک به نیروی نرمال از پیشروی آن جلوگیری کرد .پروژه های حاضر آزمایش خواص مکانیکی کامپوزیت پایه AL2 O3 نانو کریستالینه با Nb و با SWCNT و بدون SWCNT می باشد .مکانیزم خمش توسط SEM کنترل شد . همچنین جمعیت تست نفوذ و توسعه فازهای داکتیل 10% Nb به ماتریس افزوده شد .
روش انجام آزمایش :1 تهیه پودر AL2 O3 Nb1 و Nb | SWCNT| AL2 O3نانو کامپوزیت.
پودرهای به کار برده شده شامل:پودر AL2 O3 شامل ذرات و لا به اندازه ی m 45 به وسیله آسیاب لوله ای تهیه شده .Nb به میزان 90% با خلوص 9985% به اندازه ی m 74 .
AL به میزان 10% با خلوص 995% به اندازه ی m 45 .آلیاژ محلول آلومینا Nb – E %10 و 1% PVA ترکیب شده .AL به منظور کاهش سطح اکسید Nb و PVA به منظور جلوگیری از سختی کلوخه های پودری .پودر حاصله در ظرف WC به مدت h 24 HEMB شد که در آسیاب فقط 1 گلوله WC حضور داشت.پودر کامپوزیت حاصله به منظور حذف PVA برای مراحل بعدی در خلأ به مدت h 3 در دمای 350 حرارت داده شد .پودر کامپوزیت Nb آلومینا برای min 15 برای ml 500 اتانول تحت امواج آلتراسونیک قرار گرفت.دوغاب حاصل با gr 280 پودر زیرکونیای دارای امواج مغناطیس در یک بطری از جنس پروپیلن و در هم زن با دور m130 به مدت h 24 مخلوط شد .در دقایق پایانی میکسر ml 8 نانو اسپرس ( متشکل از مواد آلی فعال سطحی) همراه با ml150 آب سبک جوش آورده شد سپس SWCNT ها را به این مخلوط افزوده و به مدت min 5 تحت امواج آلتراسونیک قرار گرفت .محلول میکسر شده به آرامی به محلول حاوی SWCNT هایی که پراکنده شدند اضافه می شود سپس محلول به بطری پروپیلن منتقل شده و دوباره به مدت h24 میکس می شود . هر دو کیس Nb – AL2O3 Nb – SWCNT ,AL2O3 به یک روش مخلوط می شوند . در سرتاسر سیکل کاری ذرات حدود m 160 حفظ می شوند و این ذرات داخل بشر شیشه ای منتقل و با پودر مگنیتت مخلوط شده و سپس خشک می شوند . در مرحله خشک شده کلوخه ها را در هاون خرد کرده و با مش m 160 آنها را حفظ می کنند . خشک شدن محلولNb | SWCNT| AL2 O3 در دمای 460 به مدت h 4 می باشد .
یکپارچه سازی با SPS :این عمل تحت خلأ و با ماشین SPS انجام شد . پارامترهای دستگاه : فشار اعمالی 105 mpa ، حالت روشن با پالس 12 سیکل به مدت ms2 وحالت خاموش با پالس 2 سیکل ms2 . ماکزیمم آمپر دستگاه A 5000 و V 10 برای اندازه گیری یکپارچگی ساختار از آذر سنج نوری استفاده می شود . و رشد دما با سرعت 125 تا دمای 600 می باشد . از 600 دمای مطلوب (300-1200) مراحل حرارت دهی از 150 به 233 افزایش یافت .
بحث ونتایج :1 Nb – AL2O3 10% روش فرو رونده سختی در حدود capa229 واستحکام شکست حدود . مشاهده شد که پس از حفر نقطه ای Nb از انتشار ترک در سطح جلوگیری کرده که این اثر در شکل شماره 1 قابل مشاهده است . مشاهده می شود که توزیع دامنه ها نامناسب بوده و حداکثر m 766/0 است . همچنین باقی مانده فرج ها نیز قابل مشاهده است . با روش خمش موضعی تا فنس شکست قابل محاسبه نیست ولی به وسیله فرمول به میزان Mpa 1/6 آنالیز سطح شکست دو پدیده متفاوت را دربار Nb آشکار می کند .
1) در برخی از قسمت های نمونه Nb کاملا ً از شکست ماتریس شکننده آلومینایی و در برخی موارد با کاهش اندازه ذرات ماتریس این مسئله حل می شود .2) مشاهده شد که بیشتر قطعات Nb از شکنندگی ماتریس می کاهد .شکست و ورقه شدن و حضور فازهای سفید نشان دهنده آن است که بدون تغییر شکل زیاد ترک از زیر آنها عبور کرده است . هر چند تا فنس شکست خمشی فازهای NP mpa 6.1 است با این حال مقداری از انرژی انتشار ترک ها را جذب می کند .این انرژی قادر به تغییر شکل پلاستیک فازهای Nb نمی باشد و مقاومت در برابر انتشار ترک ها منسوب به خاصیت پل زدن و کند کردن ترک ها می باشد .دیزوی رشد ترک در نمونه های حفره ی ویکرز مشاهده نشد . بنابراین حفره ها رشد ترک مربوط به گوه ای شکل است و ترک ها به صورت رشته ای می باشد . ایجاد و تست شدن با شرایط برابر . مقایسه عکس ها نشان می دهد که در این حالت عیوب در برخی دانه ها اتفاق افتاده است .-Nb – AL2O3 SWCNT اندازه گیری ترک های ناشی از ایندنتور به دلیل تجمع این SWCNT و تیره بودن آنها متشکل است . اسکن به وسیل SEM مشخص کرد که اکثر CNT های تجمع یافته جایگزین دانه های میکرونی آنها شدند به طوری که عرض این CNT ها m 1 دیده شده .
در شکل 3 اندازه گیر سختی کم تری را (pa19.36 ) همچنین تا فنس شکست mpa 2.7 از سیستم Nb – AL2O3 نشان داد .آلگومره شده موجب خطا در آزمایش می شود مقایسه شکل 1و 3 نشان می دهد که دانه های Nb تأثیر کم تری در جلوگیری از ترک نسبت به CNT ها دارند. افزودن CNT ها اثرات Nb در تافنینگ درا اصلاح و تکمیل کرد .
در واقع دلیل کاهش تا فنس در اثر افزایش CNT ها تجمع خطرات به دور CNT ها می باشد . در نتیجه پراکندگی CNT ها موجب دفع این موضوع خواهد شد . دلیل این خطرات مکانیزم SPS بوده چرا که در اثر دمای کار SPS 1150 ساختار شروع به تغییر حالت می کند .برای رفع این مشکل زمان نگه داری در 1200 به 5 min افزایش می یابد . و چگالی نیز به 5/98% می رسد .سطح شکست نمونه Nb | SWCNT| AL2 O3 اندازه دانه ها مقداری بزرگتر از Nb – AL2O3 هستند که به دلیل SPS آن است .آلگومره شدن CNT ها موجب تبدیل سختی آنها از حالت نانوکریستالینه به میکرو کریستالینه می شود . عیب شکنندگی Nb در این سیستم نیز مشاهده شد که اکثر پل روی ترک ها و مک ها عامل آن هستند .
نانو کامپوزیت پایه آلومینا به همراه Nb و SWCNTبا تکنیک پودری سنتز شد و SPS متراکم شد . تا فنس شکست در هر دونمونه به روش ایندنشن اندازه گیری شد . نانوکریستالینه آلومینا تا فنس شکست پایئن دارد Map 2.5 که بیشترین تا فنس با افزودن Nb 10% به این ماتریس حاصل شد که در حدود Mpa6.1 افزایش یافت .
در حالیکه 5% SWCNT به این ماتریس اضافه می شود تا فنس شکست خمشی را به mpa 3.3 کاهش داد.این کاهش به تجمع مک ها به اطراف ذرات CNT می باشد که در جریان SPS رخ دهده و یک موضوع اجتناب ناپذیر است . با این تفاسیر از سیستم Nb – AL2O3 در خودرو نگه دارنده های بزرگ استفاده می شود و از سیستم Nb | CNT| AL2 O3 در موارد هدایت حرارتی با توجه به شرایط کار استفاده می شود .در تست موضعی خمش مشاهده شد که در نانو کامپوزیت هایی که تا فنس آنها تقویت شده قدرت رشد ترک ها کاهش یافته و آنها را به صورت منحنی هدایت می کند . همچنین اگر این اثر روی ترک ها اعمال شود رشد ترک ها در حدود چند میکرون خواهد بود .
• اثر نیلوفری و كاربرد آن در ساخت سطوح خود تمیز شوندهیكی از شناخته شده ترین مزیت های فناوری نانو اثر نیلوفری ست كه سطوح خود تمیز شونده را امكان پذیر می سازد. به سبب ساختار بسیار صاف و یكنواخت سطح گل نیلوفر، قطرات آب و گرد غبار از روی گلبرگ ها می لغزند بی آنكه اثری روی آنها به جای گذارند.
بنابراین اگر سطوح اجسام دارای ساختار بسیار صاف و صیقلی (در مقیاس نانو) باشند، ذرات آلودگی و همچنین آب روی آنها باقی نخواهد ماند. رنگ ها و پوشش های سقف خودرو كه این اصل طبیعی را به كار می برند امروزه در بازار موجود می باشند. ساختار نانویی این سطوح، از جمع شدن ذرات آلودگی و قطرات بسیار ریز آب نیز جلوگیری می كند. همچنین رینگ های خود تمیز شونده نیز با استفاده از این ویژگی در حال تولید هستند.همچنین پوشش نانویی در حال تولید است كه با اضافه كردن آن به سطح شیشه خودرو (برای مثال به روش اسپری كردن)، فرورفتگی های بسیار ریز سطح شیشه را پر كرده و سطح صاف و بدون پستی و بلندی ایجاد می كند و در نتیجه قطرات ریز آب و گرد و غبار روی شیشه باقی نمی ماند و بنابراین موجب افزایش دید راننده، استهلاك كمتر برف پاكن ها و نیاز كمتر به شستشوی شیشه و همچنین بهبود دید در شب در نتیجه كاهش انعكاس مضر نور می شود.
• شیشه های نوین با توانایی بازتاب پرتو فروسرخنمونه ای دیگر از كاربرد های نانوفناوری در صنعت شیشه خودرو، شیشه هایی با قابلیت بازتاب پرتو فروسرخ نور خورشید می باشد. به این گونه كه یك لایه بسیار نازك از نانوذرات بین دو لایه ی شیشه قرار گرفته اند كه وظیفه آنها بازتاباندن پرتو فرو سرخ نور خورشید و در نتیجه جلوگیری از گرم شدن زیاد داخل خودرو می باشد.
مبدل های كاتالیستیهمانطور كه می دانید اگر احتراق به طور كامل و ایده آل رخ دهد خروجیهای حاصل از آن، آب، نیتروژن (N2) و دی اكسید كربن (CO2) می باشد و اگر احتراق در شرایط ایده آل رخ ندهد مثلا برای احتراق هوای مناسب وجود نداشته و;. در اینصورت خروجیهای حاصل از احتراق، گازهای زیان آوری همچون مونو اكسید كربن (CO)، گروه گازهای (NOx) و هیدروكربنهای نسوخته (CH) می باشند. وظیفه مبدل كاتالیستی كه در مسیر گازهای خروجی از موتور قرار می گیرد این است كه گازهای فوق را به گازهای بی خطر تبدیل كند.
یكی از ویژگی های نانوذرات كه در تولید مبدل های كاتالیستی استفاده شده چنین است: سطح تماس ذرات با كاهش اندازه آنها و افزایش تعدادشان (به طوری كه جرم كلی مجموعه ثابت بماند) افزایش می یابد. یك دسته از واكنش های شیمیایی روی سطح كاتالیست ها رخ می دهند و بنابراین سطح تماس بیشتر، كاتالیست فعال تری را موجب می شود. از این رو به كارگیری نانوذرات در مبدل های كاتالیستی منجر به تولید مبدل های موثر تر خواهد شد.
شیشه های نانو :در این بخش مایعی را به شما معرفی می كنیم كه مانع از ماندن آب و یا هر نوع آلودگی دیگر بر سطوحی همچون شیشه و كروم می شود. پوشش محافظ شیشه، ماده ای است كه باعث می شود هر نوع آلودگی بر روی شیشه خود به خود در كمتر از یك ثانیه پاك شود. این ماده كه بصورت مایع می باشد و با آغشته نمودن سطح شیشه به یك لایه نازك و نارمئی از آن، می توان از نشستن هر چیز بر روی شیشه جلوگیری كرد. این مایع به مولكولهای سطح شیشه میچسبد و باعث منحرف شدن آب و هرنوع آلودگی دیگر بر روی شیشه می شود.
موارد استفاده از این محصول:حفاظت از شیشه های پنجره ها و ویترین مغازه هاحمام و سرویس های بهداشتیسقفهای شیشه ای، نمای خودروها و كاشی هاكاشی های دیواریآینه هاسلولهای خورشیدیدوش حمام، دستشویی ، وان حمامگلخانه هاصفحات نمایشگر، لنز دوربین، عینكمزایای استفاده از این ماده:پس زدن آب از روی سطوحعدم چسبیدن آلودگی و كثافات بر روی سطوحعدم رسوب گرفتن سطوحعدم رؤیت توسط چشمپایدار نمودن سطوح در برابر فرسایشممانعت از خوردگی سطح توسط هواجلوگیری از رشد قارچ هاسهولت پاكیزگی
صرفه جویی در آب و مواد پاك كنندهمقاومت بالا تا حدود 400 درجه سانتی گرادبرای بدن مضر نمی باشد و مصموم كننده نیست
دیدگاه علمی:باید توجه كنید كه این ماده یك لایه نیست كه بر روی سطوح كشیده شود، بلكه تغییر شیمیایی در سطح مولكولی می باشد، كه از آلوده شدن سطوح جلوگیری می نماید. این تركیب آبگریز، نمیگذارد تا آب و یا هر ذره دیگری بر روی سطح شیشه و یا كروم بنشیند. این ماده بسیار نازك و شفاف است و اصلا قابل مشاهده به وسیله چشم نیست و در نتیجه سطوح شفاف مانند شیشه ها و لنزهای دوربین نیز به وسیله آن به راحتی محافظت می شوند. این ذرات نانو بر روی مولكولهای سطوح می چسبند و مانع از نفوذ هر نوع ماده دیگر بر روی سطح می شوند. می بینید كه آب هرگز بر روی سطوح آغشته شده بوسیله این ماده نمی ایستد، بنابراین اگر جسمی بر روی این سطوح بنشیند تنها با ریختن آب بر روی سطح و یا باریدن باران پاك خواهد شد.اگر بوسیله میكروسكوپ به سطح شیشه نگاه كنیم می بینیم كه سطوح شیشه ای كاملا صاف نمی باشند، بنابراین وقتی كه آب و یا هر آلودگی دیگری بر روی آنها بریزد به راحتی می چسبد. شیشه هایی كه با استفاده از فن آوری نانو ساخته می شوند اجازه می دهند كه آلودگی ها با آب تركیب شوند و به این وسیله بدون دخالت هیچ ماده دیگری از روی شیشه سر بخورند. این مواد همچنین مانع از رسوب نمكها بر روی سطوح شیشه می شوند. همچنین این مواد به وسیله آب، مواد پاك كننده و یا فشار فیزیكی از سطح شیشه جدا نمی شوند. این محصول نانو نانو تضمین شده است كه از وضوح شیشه ها و همچنین شفافیت آنها كاسته نشود. نگهداری این شیشه ها نیز بسیار ساده و كم هزینه است.
طریقه مصرف:توجه داشته باشید كه قبل از استفاده از این مواد، سطح شیشه یا كروم باید با فشار آب و یا بخار كاملا پاك شده و سپس خشك شود، به صورتی كه هیچگونه رطوبتی بر روی شیشه نباشد. همچنین سطح شیشه باید از نظر شیمیایی خنثی (نه خاصیت بازی داشته باشد و نه اسیدی) باشد، این بدان معناست كه نباید هیچ ماده اضافی (از جمله مواد پاك كننده) بر روی شیشه قرار داشته باشد. حال با یك پارچه كتانی و یا دستمال كاغذی خشك و تمیز سطح را تمیز می كنیم.
سپس مواد مورد نظر را با استفاده از یك اسپری بر روی سطح می پاشیم و به سرعت توسط پارچه كتانی تمیز آنرا كاملا روی شیشه می گستریم. توجه كنید كه نباید این مواد را چند بار بر روی یك سطح بریزیم، مطمن باشید كه با همان یكبار، مواد كار خود را انجام می دهند. به هیچ وجه بر روی سطوحی كه تازه مواد بر روی آنها قرار گرفته راه نروید. محصول نباید در هوای سرد و یا گرم قرار گیرد.توجه: بعد از پایان كار مواد نانو بر روی شیشه دیده نخواهند شد. بهتر است تا 24 ساعت به سطوح دست نزنید. همچنین در روی سقف ها نیز می توانید 1 ساعت بعد از پایان كار راه بروید. بهتر است برای پاشیدن مواد بر روی سطوح از اسپری های مخصوص استفاده كنید.
ادامه خواندن مقاله بررسي کاربرد نانوتکنولوژي در صنايع خودروسازي
نوشته مقاله بررسي کاربرد نانوتکنولوژي در صنايع خودروسازي اولین بار در دانلود رایگان پدیدار شد.